ViT算法及其在轴承故障诊断工程领域应用
立即下载
资源介绍:
ViT算法及其在轴承故障诊断工程领域应用
## Classification:分类模型在Pytorch当中的实现
---
## 目录
1. [仓库更新 Top News](#仓库更新)
2. [所需环境 Environment](#所需环境)
3. [文件下载 Download](#文件下载)
4. [训练步骤 How2train](#训练步骤)
5. [预测步骤 How2predict](#预测步骤)
6. [评估步骤 How2eval](#评估步骤)
7. [参考资料 Reference](#Reference)
## Top News
**`2022-03`**:**进行了大幅度的更新,支持step、cos学习率下降法、支持adam、sgd优化器选择、支持学习率根据batch_size自适应调整。**
BiliBili视频中的原仓库地址为:https://github.com/bubbliiiing/classification-pytorch/tree/bilibili
**`2021-01`**:**仓库创建,支持模型训练,大量的注释,多个可调整参数。支持top1-top5的准确度评价。**
## 所需环境
pytorch == 1.2.0
## 文件下载
训练所需的预训练权重都可以在百度云下载。
链接: https://pan.baidu.com/s/1Jxeyeni45PvGDuPNdhAjCw
提取码: uyke
训练所用的示例猫狗数据集也可以在百度云下载。
链接: https://pan.baidu.com/s/1hYBNG0TnGIeWw1-SwkzqpA
提取码: ass8
## 训练步骤
1. datasets文件夹下存放的图片分为两部分,train里面是训练图片,test里面是测试图片。
2. 在训练之前需要首先准备好数据集,在train或者test文件里里面创建不同的文件夹,每个文件夹的名称为对应的类别名称,文件夹下面的图片为这个类的图片。文件格式可参考如下:
```
|-datasets
|-train
|-cat
|-123.jpg
|-234.jpg
|-dog
|-345.jpg
|-456.jpg
|-...
|-test
|-cat
|-567.jpg
|-678.jpg
|-dog
|-789.jpg
|-890.jpg
|-...
```
3. 在准备好数据集后,需要在根目录运行txt_annotation.py生成训练所需的cls_train.txt,运行前需要修改其中的classes,将其修改成自己需要分的类。
4. 之后修改model_data文件夹下的cls_classes.txt,使其也对应自己需要分的类。
5. 在train.py里面调整自己要选择的网络和权重后,就可以开始训练了!
## 预测步骤
### a、使用预训练权重
1. 下载完库后解压,model_data已经存在一个训练好的猫狗模型mobilenet025_catvsdog.h5,运行predict.py,输入
```python
img/cat.jpg
```
### b、使用自己训练的权重
1. 按照训练步骤训练。
2. 在classification.py文件里面,在如下部分修改model_path、classes_path、backbone和alpha使其对应训练好的文件;**model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类,backbone对应使用的主干特征提取网络,alpha是当使用mobilenet的alpha值**。
```python
_defaults = {
#--------------------------------------------------------------------------#
# 使用自己训练好的模型进行预测一定要修改model_path和classes_path!
# model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
# 如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
#--------------------------------------------------------------------------#
"model_path" : 'model_data/mobilenet_catvsdog.pth',
"classes_path" : 'model_data/cls_classes.txt',
#--------------------------------------------------------------------#
# 输入的图片大小
#--------------------------------------------------------------------#
"input_shape" : [224, 224],
#--------------------------------------------------------------------#
# 所用模型种类:
# mobilenet、resnet50、vgg16是常用的分类网络
# cspdarknet53用于示例如何使用mini_imagenet训练自己的预训练权重
#--------------------------------------------------------------------#
"backbone" : 'mobilenet',
#-------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
#-------------------------------#
"cuda" : True
}
```
3. 运行predict.py,输入
```python
img/cat.jpg
```
## 评估步骤
1. datasets文件夹下存放的图片分为两部分,train里面是训练图片,test里面是测试图片,在评估的时候,我们使用的是test文件夹里面的图片。
2. 在评估之前需要首先准备好数据集,在train或者test文件里里面创建不同的文件夹,每个文件夹的名称为对应的类别名称,文件夹下面的图片为这个类的图片。文件格式可参考如下:
```
|-datasets
|-train
|-cat
|-123.jpg
|-234.jpg
|-dog
|-345.jpg
|-456.jpg
|-...
|-test
|-cat
|-567.jpg
|-678.jpg
|-dog
|-789.jpg
|-890.jpg
|-...
```
3. 在准备好数据集后,需要在根目录运行txt_annotation.py生成评估所需的cls_test.txt,运行前需要修改其中的classes,将其修改成自己需要分的类。
4. 之后在classification.py文件里面修改如下部分model_path、classes_path、backbone和alpha使其对应训练好的文件;**model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类,backbone对应使用的主干特征提取网络,alpha是当使用mobilenet的alpha值**。
```python
_defaults = {
#--------------------------------------------------------------------------#
# 使用自己训练好的模型进行预测一定要修改model_path和classes_path!
# model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
# 如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
#--------------------------------------------------------------------------#
"model_path" : 'model_data/mobilenet_catvsdog.pth',
"classes_path" : 'model_data/cls_classes.txt',
#--------------------------------------------------------------------#
# 输入的图片大小
#--------------------------------------------------------------------#
"input_shape" : [224, 224],
#--------------------------------------------------------------------#
# 所用模型种类:
# mobilenet、resnet50、vgg16是常用的分类网络
# cspdarknet53用于示例如何使用mini_imagenet训练自己的预训练权重
#--------------------------------------------------------------------#
"backbone" : 'mobilenet',
#-------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
#-------------------------------#
"cuda" : True
}
```
5. 运行eval_top1.py和eval_top5.py来进行模型准确率评估。
## Reference
https://github.com/keras-team/keras-applications
资源文件列表:
a.zip 大约有1710个文件