首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

论文实现 - YOLOv7:可训练的免费包为实时物体检测器树立了新标杆

网络技术 39.37MB 42 需要积分: 1
立即下载

资源介绍:

论文实现 - YOLOv7:可训练的免费包为实时物体检测器树立了新标杆
# Official YOLOv7 Implementation of paper - [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/yolov7-trainable-bag-of-freebies-sets-new/real-time-object-detection-on-coco)](https://paperswithcode.com/sota/real-time-object-detection-on-coco?p=yolov7-trainable-bag-of-freebies-sets-new) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akhaliq/yolov7) Open In Colab [![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2207.02696-B31B1B.svg)](https://arxiv.org/abs/2207.02696) ## Web Demo - Integrated into [Huggingface Spaces ����](https://huggingface.co/spaces/akhaliq/yolov7) using Gradio. Try out the Web Demo [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akhaliq/yolov7) ## Performance MS COCO | Model | Test Size | APtest | AP50test | AP75test | batch 1 fps | batch 32 average time | | :-- | :-: | :-: | :-: | :-: | :-: | :-: | | [**YOLOv7**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) | 640 | **51.4%** | **69.7%** | **55.9%** | 161 *fps* | 2.8 *ms* | | [**YOLOv7-X**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) | 640 | **53.1%** | **71.2%** | **57.8%** | 114 *fps* | 4.3 *ms* | | | | | | | | | | [**YOLOv7-W6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) | 1280 | **54.9%** | **72.6%** | **60.1%** | 84 *fps* | 7.6 *ms* | | [**YOLOv7-E6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) | 1280 | **56.0%** | **73.5%** | **61.2%** | 56 *fps* | 12.3 *ms* | | [**YOLOv7-D6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) | 1280 | **56.6%** | **74.0%** | **61.8%** | 44 *fps* | 15.0 *ms* | | [**YOLOv7-E6E**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt) | 1280 | **56.8%** | **74.4%** | **62.1%** | 36 *fps* | 18.7 *ms* | ## Installation Docker environment (recommended)
Expand ``` shell # create the docker container, you can change the share memory size if you have more. nvidia-docker run --name yolov7 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov7 --shm-size=64g nvcr.io/nvidia/pytorch:21.08-py3 # apt install required packages apt update apt install -y zip htop screen libgl1-mesa-glx # pip install required packages pip install seaborn thop # go to code folder cd /yolov7 ```
## Testing [`yolov7.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) [`yolov7x.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) [`yolov7-w6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) [`yolov7-e6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) [`yolov7-d6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) [`yolov7-e6e.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt) ``` shell python test.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.65 --device 0 --weights yolov7.pt --name yolov7_640_val ``` You will get the results: ``` Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.51206 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.69730 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.55521 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.35247 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.55937 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.66693 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.38453 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.63765 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.68772 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.53766 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.73549 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.83868 ``` To measure accuracy, download [COCO-annotations for Pycocotools](http://images.cocodataset.org/annotations/annotations_trainval2017.zip) to the `./coco/annotations/instances_val2017.json` ## Training Data preparation ``` shell bash scripts/get_coco.sh ``` * Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strongly recommend that you delete `train2017.cache` and `val2017.cache` files, and redownload [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip) Single GPU training ``` shell # train p5 models python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml # train p6 models python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml ``` Multiple GPU training ``` shell # train p5 models python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch-size 128 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml # train p6 models python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_aux.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch-size 128 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml ``` ## Transfer learning [`yolov7_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7_training.pt) [`yolov7x_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x_training.pt) [`yolov7-w6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6_training.pt) [`yolov7-e6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6_training.pt) [`yolov7-d6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6_training.pt) [`yolov7-e6e_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e_training.pt) Single GPU finetuning for custom dataset ``` shell # finetune p5 models python train.py --workers 8 --device 0 --batch-size 32 --data data/custom.yaml --img 640 640 --cfg cfg/training/yolov7-custom.yaml --weights 'yolov7_training.pt' --name yolov7-custom --hyp data/hyp.scratch.custom.yaml # finetune p6 models python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/custom.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6-custom.yaml --weights 'yolov7-w6_training.pt' --name yolov7-w6-custom --hyp data/hyp.scratch.custom.yaml ``` ## Re-parameterization See [reparameterization.ipynb](tools/reparameterization.ipynb) ## Inference On video: ``` shell python detect.py --weights

资源文件列表:

yolov7.zip 大约有128个文件
  1. yolov7/
  2. yolov7/.gitignore 3.97KB
  3. yolov7/LICENSE.md 34.33KB
  4. yolov7/README.md 14.4KB
  5. yolov7/cfg/
  6. yolov7/cfg/baseline/
  7. yolov7/cfg/baseline/r50-csp.yaml 1.39KB
  8. yolov7/cfg/baseline/x50-csp.yaml 1.4KB
  9. yolov7/cfg/baseline/yolor-csp-x.yaml 1.56KB
  10. yolov7/cfg/baseline/yolor-csp.yaml 1.56KB
  11. yolov7/cfg/baseline/yolor-d6.yaml 1.96KB
  12. yolov7/cfg/baseline/yolor-e6.yaml 1.95KB
  13. yolov7/cfg/baseline/yolor-p6.yaml 1.99KB
  14. yolov7/cfg/baseline/yolor-w6.yaml 1.99KB
  15. yolov7/cfg/baseline/yolov3-spp.yaml 1.5KB
  16. yolov7/cfg/baseline/yolov3.yaml 1.49KB
  17. yolov7/cfg/baseline/yolov4-csp.yaml 1.56KB
  18. yolov7/cfg/deploy/
  19. yolov7/cfg/deploy/yolov7-d6.yaml 5.96KB
  20. yolov7/cfg/deploy/yolov7-e6.yaml 5.22KB
  21. yolov7/cfg/deploy/yolov7-e6e.yaml 9.27KB
  22. yolov7/cfg/deploy/yolov7-tiny-silu.yaml 2.97KB
  23. yolov7/cfg/deploy/yolov7-tiny.yaml 4.51KB
  24. yolov7/cfg/deploy/yolov7-w6.yaml 4.54KB
  25. yolov7/cfg/deploy/yolov7.yaml 3.9KB
  26. yolov7/cfg/deploy/yolov7x.yaml 4.39KB
  27. yolov7/cfg/training/
  28. yolov7/cfg/training/yolov7-d6.yaml 6.1KB
  29. yolov7/cfg/training/yolov7-e6.yaml 5.36KB
  30. yolov7/cfg/training/yolov7-e6e.yaml 9.41KB
  31. yolov7/cfg/training/yolov7-tiny.yaml 4.51KB
  32. yolov7/cfg/training/yolov7-w6.yaml 4.67KB
  33. yolov7/cfg/training/yolov7.yaml 3.91KB
  34. yolov7/cfg/training/yolov7x.yaml 4.38KB
  35. yolov7/data/
  36. yolov7/data/coco.yaml 1.39KB
  37. yolov7/data/hyp.scratch.custom.yaml 1.47KB
  38. yolov7/data/hyp.scratch.p5.yaml 1.47KB
  39. yolov7/data/hyp.scratch.p6.yaml 1.47KB
  40. yolov7/data/hyp.scratch.tiny.yaml 1.47KB
  41. yolov7/deploy/
  42. yolov7/deploy/triton-inference-server/
  43. yolov7/deploy/triton-inference-server/README.md 7.12KB
  44. yolov7/deploy/triton-inference-server/boundingbox.py 960B
  45. yolov7/deploy/triton-inference-server/client.py 14.03KB
  46. yolov7/deploy/triton-inference-server/data/
  47. yolov7/deploy/triton-inference-server/data/dog.jpg 159.92KB
  48. yolov7/deploy/triton-inference-server/data/dog_result.jpg 179.94KB
  49. yolov7/deploy/triton-inference-server/labels.py 1.35KB
  50. yolov7/deploy/triton-inference-server/processing.py 2.06KB
  51. yolov7/deploy/triton-inference-server/render.py 3.1KB
  52. yolov7/detect.py 9.11KB
  53. yolov7/export.py 8.95KB
  54. yolov7/figure/
  55. yolov7/figure/horses_prediction.jpg 151.45KB
  56. yolov7/figure/mask.png 101.6KB
  57. yolov7/figure/performance.png 164.53KB
  58. yolov7/figure/pose.png 347.06KB
  59. yolov7/figure/tennis.jpg 6.77KB
  60. yolov7/figure/tennis_caption.png 18.64KB
  61. yolov7/figure/tennis_panoptic.png 8.05KB
  62. yolov7/figure/tennis_semantic.jpg 4.43KB
  63. yolov7/figure/yolov7_3d.jpg 1.26MB
  64. yolov7/figure/yolov7_city.jpg 2.22MB
  65. yolov7/figure/yolov7_lidar.jpg 935.87KB
  66. yolov7/figure/yolov7_road.jpg 1.03MB
  67. yolov7/hubconf.py 3.5KB
  68. yolov7/inference/
  69. yolov7/inference/images/
  70. yolov7/inference/images/bus.jpg 476.01KB
  71. yolov7/inference/images/horses.jpg 130.37KB
  72. yolov7/inference/images/image1.jpg 78.85KB
  73. yolov7/inference/images/image2.jpg 140.26KB
  74. yolov7/inference/images/image3.jpg 114.89KB
  75. yolov7/inference/images/zidane.jpg 164.99KB
  76. yolov7/models/
  77. yolov7/models/__init__.py 6B
  78. yolov7/models/common.py 82.41KB
  79. yolov7/models/experimental.py 10.64KB
  80. yolov7/models/yolo.py 39.09KB
  81. yolov7/paper/
  82. yolov7/paper/yolov7.pdf 5.85MB
  83. yolov7/requirements.txt 958B
  84. yolov7/scripts/
  85. yolov7/scripts/get_coco.sh 820B
  86. yolov7/test.py 16.88KB
  87. yolov7/tools/
  88. yolov7/tools/YOLOv7-Dynamic-Batch-ONNXRUNTIME.ipynb 5.66MB
  89. yolov7/tools/YOLOv7-Dynamic-Batch-TENSORRT.ipynb 12.01MB
  90. yolov7/tools/YOLOv7CoreML.ipynb 873.18KB
  91. yolov7/tools/YOLOv7onnx.ipynb 1.47MB
  92. yolov7/tools/YOLOv7trt.ipynb 1.69MB
  93. yolov7/tools/compare_YOLOv7_vs_YOLOv5m6.ipynb 3.73MB
  94. yolov7/tools/compare_YOLOv7_vs_YOLOv5m6_half.ipynb 3.75MB
  95. yolov7/tools/compare_YOLOv7_vs_YOLOv5s6.ipynb 3.73MB
  96. yolov7/tools/compare_YOLOv7e6_vs_YOLOv5x6.ipynb 3.74MB
  97. yolov7/tools/compare_YOLOv7e6_vs_YOLOv5x6_half.ipynb 3.74MB
  98. yolov7/tools/instance.ipynb 476.94KB
  99. yolov7/tools/keypoint.ipynb 465.25KB
  100. yolov7/tools/reparameterization.ipynb 30.77KB
  101. yolov7/tools/visualization.ipynb 482.29KB
  102. yolov7/train.py 37.14KB
  103. yolov7/train_aux.py 36.56KB
  104. yolov7/utils/
  105. yolov7/utils/__init__.py 6B
  106. yolov7/utils/activations.py 2.2KB
  107. yolov7/utils/add_nms.py 5.48KB
  108. yolov7/utils/autoanchor.py 6.98KB
  109. yolov7/utils/aws/
  110. yolov7/utils/aws/__init__.py 5B
  111. yolov7/utils/aws/mime.sh 780B
  112. yolov7/utils/aws/resume.py 1.09KB
  113. yolov7/utils/aws/userdata.sh 1.22KB
  114. yolov7/utils/datasets.py 54.91KB
  115. yolov7/utils/general.py 36.01KB
  116. yolov7/utils/google_app_engine/
  117. yolov7/utils/google_app_engine/Dockerfile 821B
  118. yolov7/utils/google_app_engine/additional_requirements.txt 105B
  119. yolov7/utils/google_app_engine/app.yaml 172B
  120. yolov7/utils/google_utils.py 4.76KB
  121. yolov7/utils/loss.py 73.27KB
  122. yolov7/utils/metrics.py 9.09KB
  123. yolov7/utils/plots.py 20.43KB
  124. yolov7/utils/torch_utils.py 15.1KB
  125. yolov7/utils/wandb_logging/
  126. yolov7/utils/wandb_logging/__init__.py 6B
  127. yolov7/utils/wandb_logging/log_dataset.py 815B
  128. yolov7/utils/wandb_logging/wandb_utils.py 15.88KB
0评论
提交 加载更多评论
其他资源 波形生成器软件,和 示波器软件
波形生成器软件,和 示波器软件
Anaconda 安装所遇到的一系列问题
anaconda安装 需要将anaconda/scripts监测环境变量里面。 安装anaconda以后使用conda指令时,不能使用清华源
C++实现的高效A*算法
A-Star算法 这是利用C++实现的高效的A-Star算法。只对算法的程序实现做了穷尽而为的优化,并没有对算法自行进行改进。优化的主要方法是:快速判断路径节点是否在开启/关闭链表中、快速查找最小f值的节点以及优化路径节点分配内存的问题。 运行环境 支持c++11的编译器
python反编译的脚本文件
用cmake打包好的python反编译脚本
华硕P9X79-DELUXE bios
改良最新bios
用seq2seq模型玩对联 利用深度学习对对联
用法 打开couplet.py并配置文件位置和超参数。然后运行python couplet.py以训练模型。你可以在 Tensorbloard 上看到训练损失和 bleu 分数。learning_rate当你发现损失停止下降时,你可能需要重新配置。 如果您停止训练并想继续训练。您可以设置restore_model为True并使用m.train(, start=),这start是您已经运行的步骤。 我已经在 Nvidia GTX-1080 GPU 上训练了该模型大约 4 天。 运行经过训练的模型 打开server.py并配置vocab_file和model_dir参数。然后运行python server.py将启动一个可以播放对联的web服务。 或者使用 Dockerfile 构建 Docker 镜像并使用 Docker 运行它。记得将正确的模型文件路径挂载到 Docker 容器中。
自定的 Ubuntu 设置
只需运行一条命令,即可将全新安装的 Ubuntu 转变为配置齐全、美观且现代化的 Web 开发系统。这就是 Omakub 的一行宣传。无需为每个基本工具编写定制配置,只需开始使用或掌握所有最新的命令行工具即可。Omakub 是 Linux 最佳状态的坚定主张。
Element Audio 插件主机
特征 独立运行或作为 DAW 中的插件运行** 将音频和 MIDI 从任意位置传输到任意位置 现场演奏虚拟乐器和效果 创建可重复使用的仪器和效果图 与 MIDI 时钟进行外部同步 子图 – 相互嵌套的图 自定义键盘快捷键 占位节点 内置虚拟键盘 多次撤消/重做 脚本 - 自定义 DSP 和 DSP UI 直接在图表中嵌入插件 UI