首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

code-04.zip

行业研究 3.97KB 18 需要积分: 1
立即下载

资源介绍:

code-04.zip

资源文件列表:

code-04.zip 大约有9个文件
  1. 04-01-remark.asm 1010B
  2. 04-02-template.asm 1010B
  3. 04-03-pseudo-operation.asm 421B
  4. 04-04-proc.asm 309B
  5. 04-05-assume.asm 490B
  6. 04-06-start.asm 421B
  7. 04-07-Defining Data.asm 1006B
  8. 04-08-ptr.asm 703B
  9. 04-09-$.asm 456B
0评论
提交 加载更多评论
其他资源 台达AS系列PLC modbus TCP网口上位机通信,项目现场使用设备的C#源代码,监控设备每月每天的生产数据并生成Excel
台达AS系列PLC modbus TCP网口上位机通信,项目现场使用设备的C#源代码,监控设备每月每天的生产数据并生成Excel表格。
台达AS系列PLC modbus TCP网口上位机通信,项目现场使用设备的C#源代码,监控设备每月每天的生产数据并生成Excel
QT sqldriver/MySQL驱动qsqlmysql.dll MSVC版编译工程目录(含编译脚本)
编译起来十分麻烦。 具体参考: https://blog.csdn.net/quantum7/article/details/142298654
A星融合DWA的路径规划算法,可实现静态避障碍及动态避障,代码注释详细,matlab源码
A星融合DWA的路径规划算法,可实现静态避障碍及动态避障,代码注释详细,matlab源码
A星融合DWA的路径规划算法,可实现静态避障碍及动态避障,代码注释详细,matlab源码
永磁同步电机神经网络自抗扰控制,附带编程涉及到的公式文档,方便理解,模型顺利运行,效果好,位置电流双闭环采用二阶自抗扰控制,永磁
永磁同步电机神经网络自抗扰控制,附带编程涉及到的公式文档,方便理解,模型顺利运行,效果好,位置电流双闭环采用二阶自抗扰控制,永磁同步电机三闭环控制,神经网络控制,自抗扰中状态扩张观测器与神经网络结合,在线自整定自抗扰中参数,(依据rbf神经网络pid控制还写)输入信号为方波信号,可以切换。 均可运行,图8中可以看到参数自动整定得效果 有搭建模型的公式文档,有参考的lunwen,约20篇,可以把控制器拿下来放在你的被控对象上,微调几个参数,效果很好
永磁同步电机神经网络自抗扰控制,附带编程涉及到的公式文档,方便理解,模型顺利运行,效果好,位置电流双闭环采用二阶自抗扰控制,永磁
基于NMPC(非线性模型预测控制算法)轨迹跟踪与避障控制算法研究 仅供学习算法使用 这段代码是一个用于无人车路径跟踪的程序 下面
基于NMPC(非线性模型预测控制算法)轨迹跟踪与避障控制算法研究 仅供学习算法使用 这段代码是一个用于无人车路径跟踪的程序。下面我将对程序进行详细的分析。 首先,代码的前几行是一些初始化设置,包括清除变量、关闭警告、添加路径等。然后定义了一些模拟参数,如模拟时间、预测步数、时间步长等。 接下来,定义了一个地图的结构体`Map`,其中包含了一系列的点坐标,用于描述路径。然后调用了`waypoint`函数对地图进行处理。 然后,程序初始化了一些状态参数,并定义了一些权重矩阵`W`和`WN`,用于优化控制问题。 接下来,程序进入主循环,直到模拟时间达到设定的时间长度。在每次循环中,程序首先更新当前位置,并判断是否到达目标点。然后计算参考轨迹和障碍物代价,并解决非线性模型预测控制(NMPC)最优控制问题。 在NMPC求解过程中,程序使用了一个while循环来迭代求解,直到满足收敛条件或达到最大迭代次数。在每次迭代中,程序计算控制输入,并更新状态。 最后,程序进行可视化展示,包括绘制地图、轨迹、参考轨迹等。 总的来说,这段代码实现了一个无人车路径跟踪的功能,通过优化控制问题来实现车
基于NMPC(非线性模型预测控制算法)轨迹跟踪与避障控制算法研究
仅供学习算法使用
这段代码是一个用于无人车路径跟踪的程序 下面
LLC谐振参数计算实例,mathcad格式,列出完整计算公式,软件自动计算并绘出增益曲线,方便修改设计参数,本实例是实际产品的计
LLC谐振参数计算实例,mathcad格式,列出完整计算公式,软件自动计算并绘出增益曲线,方便修改设计参数,本实例是实际产品的计算,已验证其正确性。 送LLC原理详解和设计步骤文档PDF
LLC谐振参数计算实例,mathcad格式,列出完整计算公式,软件自动计算并绘出增益曲线,方便修改设计参数,本实例是实际产品的计
基于模型强化学习的离网微电网终身控制Python源代码,保证正确 离网微网的终身控制问题包括两个任务,即对微网设备的状态进行估计
基于模型强化学习的离网微电网终身控制Python源代码,保证正确 离网微网的终身控制问题包括两个任务,即对微网设备的状态进行估计和通过预测未来消费量和可再生产量来考虑不确定性的运行规划。 有效控制的主要挑战来自于随时间发生的各种变化。 提出了一个用于农村电气化离网微电网建模的开源强化框架。 将孤立微电网的终身控制问题归结为马尔可夫决策过程。 我们对渐进式和突然性的变化进行分类。 提出了一种新的基于模型的强化学习算法,能够解决这两种类型的变化。 特别地,所提出的算法在快速变化的系统动态中表现出了泛化特性、传输能力和较好的鲁棒性。 将该算法与基于规则的策略和带有前瞻功能的模型预测控制器进行了比较。
基于模型强化学习的离网微电网终身控制Python源代码,保证正确
离网微网的终身控制问题包括两个任务,即对微网设备的状态进行估计
python链表实战制作学生管理系统(附带pyqt5的界面优化)
python链表实战制作学生管理系统(附带pyqt5的界面优化)