首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

15705024_g.zip

行业研究 321.56KB 40 需要积分: 1
立即下载

资源介绍:

15705024_g.zip
Implementation on FPGA for CORDIC-based Computation of
Arcsine and Arccosine
Xiaoning Liu
1
, Yizhuang Xie
1
, He Chen
1
, Bingyi Li
1
1
Beijing Key Laboratory of Embedded Real-time Information Processing Technology, Beijing Institute of
Technology, Beijing 100081, China
liuxiaoning@bit.edu.cn, xyz551_bit@bit.edu.cn
Keywords: CORDIC, Double Iteration Algorithm, arcsine,
arccosine
Abstract
This paper concentrates on the hardware implementation of
CORDIC algorithm for computing inverse trigonometric
functions like arcsine and arccosine. We improve the existing
algorithm by changing the initial rotating vector of the
iterations and modifying the judging condition of rotation
direction. Due to the improvement, two iterations are saved
and the drawback of the previous algorithm is corrected.
In contrasting with the previous implementation, the
improved algorithm consumes less hardware resources and its
computing results are more accuracy.
1 Introduction
The CORDIC algorithm was originally developed in 1959 by
Jack Volder as a digital solution for real-time navigation
problems
[1]
and then was extended to a broader class of
functions
[2]
. The algorithm has been used for calculating
various trigonometric functions such as sine, cosine, arctan
and it also can be used to compute hyperbolic functions,
exponentials and square roots. CORDIC has remained
popular for its ability to calculate the results using the simple
operations of add, subtract and shift while using small Look-
Up Tables (LUTs) instead of hardware multipliers on FPGA
[3-
6].
CORDIC is widely used in the implementation of real-time
SAR imaging processing since there are many trigonometric
functions in the SAR imaging algorithm. But there are no
available IP cores for computing arcsine and arccosine
functions in the IDE (Integrated Development Environment)
of FPGA, so users need to realize the functions by using
CORDIC algorithm.
In the computation of inverse trigonometric functions like
arcsine and arccosine, the original CORDIC algorithm
displays its drawback. The accuracy of the result will get
worse due to the gain of the rotator
[7]
. Mazenc, C corrected
the gain problem by using double iteration algorithm at the
cost of an increase in complexity
[8]
. T. Lang proposed a
method which requires a standard CORDIC module plus a
module to compute the direction of rotation, but this approach
need a hard ware multiplier
[9]
.
The present work concentrates on the improvement and
optimization of double iteration algorithm. For real-time
calculation, pipeline structure is needed instead of feedback
structure, so that the operation module can obtain the
maximum throughput rate. The pipeline structure consumes
much more hardware resources for it must increase iteration
numbers in order to improve the accuracy. This paper mainly
works on the reduction of hardware resources by saving the
first two iterations without affecting the result of the
algorithm and the correction of the algorithm drawback when
the input argument is approach to 1.
2 Computation of Arcsine and Arccosine
The standard CORDIC algorithm can hardly be used for
computing arcsine and arccosine functions since it involves a
square root operation which cannot be replaced by add,
subtract or shift operations. Mazenc. C proposed double
iteration algorithm by introducing double iterations to the
standard CORDIC algorithm
[8]
. The main advantage of
double iterations is that in step n, the iteration t
i+1
=t
i
/cos(tan
-
1
2
-i
) becomes t
i+1
= t
i
/cos
2
(tan
-1
2
-i
) =t
n
(1+2
-2i
); now, a
multiplication by this term reduces to an add and a shift.
2.1 Double Iteration Algorithm
The double iteration algorithm in reference[8] for computing
arcsine function is:
0 0 0 0
2
1
1
1
1
2
1
1 0 0,
sign( ) sign( )
1
2
2
1
2 tan 2
2
i i i i i
i
ii
i
i
i
ii
i
i i i
i
i i i
x y z t t
d x if y t else x
xx
d
d
yy
z z d
t t t





(1)
The above formula gives
1
1
sin
i
tz

and
1
cos t
can
be obtained by the relationship
11
cos sin= / 2tt

.
For double iterations, the convergence domain of the
algorithm becomes:
11
00
22tan 2 , tan 2 [ 3.486,3.486]
ii
ii







.
Therefore we can compute
1
sin t
and
1
cos t
for any
1,1t 
, since
1,1
is the domain of definition.

资源文件列表:

15705024_g.zip 大约有1个文件
  1. nsfc_1000014614449.pdf 331.29KB
0评论
提交 加载更多评论
其他资源 ghjffyuuyffy
huhuh
oop-method.zip
oop-method.zip
Google Chrome下载程序ChromeSetup83.0.和VSCodeUserSetup-x64-1.89.1.exe
Google Chrome下载程序ChromeSetup83.0.和VSCodeUserSetup-x64-1.89.1.exe
Kinovea.Setup.0.8.15.zip
Kinovea.Setup.0.8.15.zip
web渗透-CTF杂项练习题
压缩包中有各种CTF杂项练习题,每种题型各一个,部分题目文件已将答案(如分离好的图片)一并包含,请细心鉴别以防做题时引发误解
快捷安装Hackbar插件(适用于所有浏览器)
将文件解压之后打开浏览器“扩展-我的扩展”界面,打开开发者模式,直接将解压好的文件拖入界面即可(没有上传提示,直接拖入界面)
Convertio是一款用于文件格式转换的浏览器扩展
在线文件转换服务提供了一种便捷的方法,允许用户将文件从一种格式轻松转换为另一种格式。这项服务覆盖了超过2500种不同的文件转换类型,满足多样化的文件处理需求。 支持的转换类型包括: 归档转换器:支持将.rar、.7z等格式转换为.zip等其他压缩格式。 音频转换器:能够将.wav、.m4a等音频文件转换为更通用的.mp3格式。 文档转换器:允许用户将.pdf、.doc等文档格式转换为图像格式,如.jpg。 电子书转换器:提供.epub到.pdf或.mobi等电子书格式的转换。 图片转换器:支持.png到.ico、.jpg等图片格式的转换。 演示文稿转换器:可以将.ppt演示文稿转换为.pdf或.jpg等格式。 视频转换器:支持将.mkv、.mov等视频文件转换为广泛兼容的.mp4格式。 PDF工具:提供PDF文件的压缩、合并、解锁以及网页到PDF的转换功能。 OCR工具:具备识别文本、光学字符识别的能力。 使用方法: 用户可以利用Google Drive或Dropbox等云存储服务进行文件转换。只需开始转换过程,然后退出应用程序,文件转换完成后将自动出现在您的云端存储中。
基于51单片机的蓝牙电子秤设计
本设计旨在实现一个基于 51 单片机的蓝牙电子秤,能够精确测量物体的重量,并通过蓝牙模块将重量数据传输到手机或其他蓝牙设备上进行显示和处理。 其功能性、稳定性测试为下图: (1)分别测量不同重量的物体,检查电子秤的测量结果是否准确。 测试蓝牙通信功能,确保数据能够正确传输到手机等设备上。 (2)长时间运行电子秤,观察其测量结果是否稳定,有无异常波动。 以下是部分示例代码: