基于注意机制的GAN用于SAR和光学图像去云
立即下载
资源介绍:
这个库为我们的论文“通过基于注意机制的GAN使用SAR和光学图像去云”提供PyTorch代码。此代码基于的实现注意GAN和CycleGAN.
# Cloud removal using SAR and optical images via attention mechanism-based GAN
This repository provides the PyTorch code for our paper “Cloud removal using SAR and optical images via attention mechanism-based GAN”. This code is based on the implementation of [Attention-GAN](https://github.com/xinyuanc91/Attention-GAN) and [CycleGAN](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix).
## Overview
The pipline of our method:
![图片](/fig/pipline.png "method pipline")
The result of our method:
![图片](/fig/result.png "result")
*Cloud removal results in the real data experiment. Each row corresponds to an example of the results. Column (a) shows the SAR images. Column (b) shows the attention map. Column (c) shows the cloud images. Columns (d) to (h) correspond to the results obtained by the pix2pix model, the SAR-opt-GAN model, the Simulation-Fusion GAN model, the GLF-CR model, and the proposed model. Column (i) shows the ground truth images.*
## Data
We use part of the data from the [SEN12MS-CR dataset](https://patricktum.github.io/cloud_removal/sen12mscr/) in the paper.
You should organize your data into a format like this, replacing them with the data directory in this code:
```
data
│
└───train/test
│ │
│ └───trainA/testA #cloud images
│ │ │ 1.png
│ │ │ 2.png
│ │ │ ...
│ │
│ └───trainB/testB #cloudless images
│ │ │ 1.png
│ │ │ 2.png
│ │ │ ...
│ │
│ └───trainC/testC #SAR images
│ │ │ 1.png
│ │ │ 2.png
│ │ │ ...
│
```
## Environment
You can Install dependencies via:
```bash
conda env create --file environment.yml
```
## Train
sh scripts/train.sh
## Test
sh scripts/test.sh
## Citation
If you find this repository/work helpful in your research, welcome to cite the paper.
```
@article{zhang2023cloud,
title={Cloud removal using SAR and optical images via attention mechanism-based GAN},
author={Zhang, Shuai and Li, Xiaodi and Zhou, Xingyu and Wang, Yuning and Hu, Yue},
journal={Pattern Recognition Letters},
volume={175},
pages={8--15},
year={2023},
publisher={Elsevier}
}
```
资源文件列表:
AttentionGAN-for-Cloud-removal-master.zip 大约有136个文件