针对于已知环境中的路径规划问题,本文提出Q-Learning解决智能体在复杂环境中找到最优路径。最终阶段包括查询 Q 表以选择最佳行动路径。训练完成后,呈现了历时、最小步数、最大奖励值等结果,以及 Q 表的可视化、最短路径和整个训练过程。Q-learning 是强化学习中的一种基于值函数的学习方法,用于解决无模型的马尔可夫决策过程(MDP)问题。在 Q-learning 中,代理尝试学习一个价值函数 Q(s, a),它估计在状态 s 采取动作 a 后所能获得的长期回报的价值。状态 s、动作a、奖励信号r、Q 值函数 (Q-table)、折扣因子 γ、学习率 α、探索-利用策略。图1 Q-Learning结构图状态s:在 Q-learning 中,代理与环境进行交互,环境处于不同的状态。状态是描述环境的特定情况或配置的抽象表示。