首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

痞子衡嵌入式:探析i.MXRT1050在GPIO上增加RC延时电路后导致边沿中断误触发问题(上篇)

编程知识
2024年08月11日 21:39

  大家好,我是痞子衡,是正经搞技术的痞子。今天痞子衡给大家分享的是i.MXRT1050在GPIO上增加RC延时电路后导致边沿中断误触发问题探析

  前段时间有一个 RT1052 客户反馈了一个有趣的问题,他们设计得是一个带 LCD 屏交互的应用,应用以官方 SDK 里的 lvgl_demo_widgets_bm 例程为基础。当客户在这个例程基础上增加了 GPIO 输入边沿中断检测,并且硬件上给 GPIO 增加了 RC 延时电路后,发现边沿中断触发得不太准确,这是怎么回事?今天痞子衡带大家还原现场:

一、问题描述

  客户做得硬件改动很简单,在 GPIO_AD_B1_04 引脚和 GPIO_AD_B1_10 引脚之间加了如下的 RC 延时电路。GPIO_AD_B1_04 上产生得是 500Hz 的方波(既可以是 GPIO 模块输出,也可以去掉 R290 后直接接信号发生器),这个方波经过 RC 电路之后输出给 GPIO_AD_B1_10,然后通过其输入边沿中断来检测电平变化,并且在每个边沿中断里都翻转一次 GPIO_AD_B1_11 电平。

  代码改动也足够简单,只需要在 \SDK_2_15_000_EVKB-IMXRT1050\boards\evkbimxrt1050\lvgl_examples\lvgl_demo_widgets_bm 工程里添加 test_gpio_irq() 函数调用即可(这里假定 GPIO_AD_B1_04 上的方波是由外部信号发生器提供的):

void GPIO1_Combined_16_31_IRQHandler(void)
{
    // 检测到 GPIO_AD_B1_10 边沿
    if ((GPIO1->ISR & (1U << 26)) && (GPIO1->IMR & (1U << 26)))
    {
        GPIO_PortClearInterruptFlags(GPIO1, 1U << 26);
        // 翻转 GPIO_AD_B1_11 电平
        GPIO_PortToggle(GPIO1, 1 << 27);
        __DSB();
    }
}

void config_rc_in_gpio(void)
{
    // 配置 GPIO_AD_B1_10 为边沿中断输入检测模式
    gpio_pin_config_t in_config = { kGPIO_DigitalInput, 1, kGPIO_NoIntmode };
    IOMUXC_SetPinMux(IOMUXC_GPIO_AD_B1_10_GPIO1_IO26, 1);
    IOMUXC_SetPinConfig(IOMUXC_GPIO_AD_B1_10_GPIO1_IO26, 0x011030U);
    GPIO_PinInit(GPIO1, 26, &in_config);
    GPIO_SetPinInterruptConfig(GPIO1, 26, kGPIO_IntRisingOrFallingEdge);
    EnableIRQ(GPIO1_Combined_16_31_IRQn);
    GPIO_PortEnableInterrupts(GPIO1, 1U << 26);
}

void config_user_out_gpio(void)
{
    // 配置 GPIO_AD_B1_11 为普通输出模式
    gpio_pin_config_t out_config = { kGPIO_DigitalOutput, 1, kGPIO_NoIntmode };
    IOMUXC_SetPinMux(IOMUXC_GPIO_AD_B1_11_GPIO1_IO27, 0);
    GPIO_PinInit(GPIO1, 27, &out_config);
    GPIO_PinWrite(GPIO1, 27, 0U);
}

void test_gpio_irq(void)
{ 
    config_rc_in_gpio();
    config_user_out_gpio();
}

  如果 GPIO_AD_B1_10 边沿中断检测无误,那么输出的 GPIO_AD_B1_11 信号应该是和原始输入 GPIO_AD_B1_04 完全同频的方波,而事实上客户用示波器抓到的 GPIO_AD_B1_11 信号偶尔会出现如下情况,很显然有边沿中断误触发的情况发生:

  并且更有趣的是,这样的测试仅在 lvgl_demo_widgets_bm 工程里能复现,而在普通 input_interrupt 工程下没有任何问题。

  • Note1:在 lvgl_demo_widgets_bm 工程下出现的 GPIO 边沿中断误触发问题仅在增加 RC 电路时存在。
  • Note2:在普通 input_interrupt 工程下即使增加 RC 电路,GPIO 边沿中断误触发问题也不存在。

二、问题复现

  理论上分析 GPIO_AD_B1_10 引脚输入的信号频率是 500Hz,那么其边沿中断应该是每 1ms 产生一次,而从上一节客户抓取的 GPIO_AD_B1_11 实际信号反推,似乎有时候边沿中断在 10us 内连续产生了两次。

  为了从软件角度抓到这个中断误触发现象,痞子衡稍微改了一下代码,将 GPIO_AD_B1_04 上信号改为软件输出(在 SysTick 1ms 一次的中断响应里翻转电平),并且用了两个计数器 s_outputPinEdgeCount、s_inputRcPinIrqCount 来分别记录 GPIO_AD_B1_04、GPIO_AD_B1_10 边沿次数。如果边沿中断触发无误的话,这两个计数器的值应该是永远相等的,但是实际跑了一段时间后发现 s_inputRcPinIrqCount 会超过 s_outputPinEdgeCount,并且随着时间累积,差距会越来越大。这说明边沿中断误触发现象是一直存在的。

volatile uint32_t s_inputRcPinIrqCount   = 0;
volatile uint32_t s_outputPinEdgeCount = 0;

void GPIO1_Combined_16_31_IRQHandler(void)
{
    // 检测到 GPIO_AD_B1_10 边沿
    if ((GPIO1->ISR & (1U << 26)) && (GPIO1->IMR & (1U << 26)))
    {
        GPIO_PortClearInterruptFlags(GPIO1, 1U << 26);
        // 计数 GPIO_AD_B1_10 边沿
        s_inputRcPinIrqCount++;
        __DSB();
    }
}

void config_rc_out_gpio(void)
{
    // 配置 GPIO_AD_B1_04 为普通输出模式
    IOMUXC_SetPinMux(IOMUXC_GPIO_AD_B1_04_GPIO1_IO20, 0);
    GPIO_PinInit(GPIO1, 20, &out_config);
    GPIO_PinWrite(GPIO1, 20, 0U);
}

void test_gpio_irq(void)
{ 
    config_rc_in_gpio();
    config_rc_out_gpio();
}

void SysTick_Handler(void)
{
    // 计数 GPIO_AD_B1_04 边沿
    s_outputPinEdgeCount++;
    GPIO_PortToggle(GPIO1, 1 << 20);
    __DSB();

    // 原应用代码省略
}

三、问题定位

  描述至此,你的第一反应到底是哪里出了问题?痞子衡想你可能会觉得罪魁祸首是 RC 延时电路,它将标准的方波上升、下降过程变得平缓,导致信号电压处于临界区的时间变长(极端情况下,对于高频信号,可能会导致其一直处于临界区),这个可能会影响 GPIO 电平跳变判定。既如此,我们先翻看一下 RT1050 的 datasheet,找到如下 GPIO DC 参数表,其高、低电平判定值分别是 70%、30% NVCC_XXXX,此外备注里说明了只要电平变化是单调的(随着时间单向增大或减小),且转换时间范围在 0.1ns - 1s 内均会被认定为有效跳变。

  这时候我们再根据 RC 延时电路标准时间常数公式 t = RC * $\ln (\frac{(V1-V0)}{V1-Vt})$ 来推算(V1 电源电压、V0 电容初始时刻电压、$V_t$ 为 t 时刻电容电压)。如果 NVCC 为 3.3V,那么上升沿时从 0V 充电到 2.31V 的时间是 12us,显然这个 12us 充电时间对于 500Hz 的方波来说不足以影响其跳变判定。

  有没有方法能抓住这个异常边沿中断发生时,GPIO_AD_B1_10 信号当时的波形状态呢?当然是可以的,我们可以再修改一下边沿中断处理函数代码,在里面计算两次中断之间的 Tick 间隔,如果间隔 Tick 低于一定值,说明是误触发,此时翻转一次 GPIO_AD_B1_11 电平用作标记。

volatile uint32_t s_systickCurVal = 0;
volatile uint32_t s_systickLastVal = 0;
volatile uint32_t s_systickCurCount = 0;
volatile uint32_t s_systickLastCount = 0;
volatile uint32_t s_systickDeltaVal;

uint32_t s_systickReloadVal = 0;

void GPIO1_Combined_16_31_IRQHandler(void)
{
     /* clear the interrupt status */
    if ((GPIO1->ISR & (1U << 26)) && (GPIO1->IMR & (1U << 26)))
    {
        s_systickCurVal = SysTick->VAL;
        s_systickCurCount = s_outputPinEdgeCount;
        GPIO_PortClearInterruptFlags(GPIO1, 1U << 26);
        // 计算两次中断之间的 Tick 间隔
        s_systickDeltaVal = (s_outputPinEdgeCount - s_systickLastCount) * s_systickReloadVal + s_systickLastVal - s_systickCurVal;
        s_systickLastVal = s_systickCurVal;
        s_systickLastCount = s_systickCurCount;
        // 当间隔 Tick 低于一定值时,说明是误触发,此时翻转一次 GPIO_AD_B1_11 电平
        if (s_systickDeltaVal <= s_systickReloadVal / 2)
        {
            GPIO_PortToggle(GPIO1, 1 << 27);
        }
        __DSB();
    }
}

int main(void)
{
    // 应用代码省略...
    test_gpio_irq();

    s_systickReloadVal = SystemCoreClock / (LVGL_TICK_MS * 1000U);
    s_inputRcPinIrqCount   = 0;
    s_systickLastVal = s_systickReloadVal;

    DEMO_SetupTick();
    // 应用代码省略...
}

  如果用示波器以 GPIO_AD_B1_11 跳变为触发信号(ch2),即能看到案发现场 GPIO_AD_B1_10 状态(ch1),确实我们看到充放电时间内出现了短时脉冲波干扰(glitch),这个脉冲导致了电平变化不是单调的,因而产生了 GPIO 中断误触发。本篇仅是定位问题,下一篇我们会具体分析这个 glitch 是如何产生的!

  至此,i.MXRT1050在GPIO上增加RC延时电路后导致边沿中断误触发问题探析(上篇)痞子衡便介绍完毕了,掌声在哪里~~~

欢迎订阅

文章会同时发布到我的 博客园主页CSDN主页知乎主页微信公众号 平台上。

微信搜索"痞子衡嵌入式"或者扫描下面二维码,就可以在手机上第一时间看了哦。

From:https://www.cnblogs.com/henjay724/p/18354026
本文地址: http://shuzixingkong.net/article/993
0评论
提交 加载更多评论
其他文章 排列组合:公式及推导
排列组合:公式及推导 引入 定义: 排列:从指定个数的元素中取出指定个数的元素进行排序;(考虑元素的顺序) 组合:从给定个数的元素中仅仅取出指定个数的元素;(不考虑元素的顺序) 加法&amp;乘法原理 加法原理: 完成一个工程可以有 \(n\) 类办法, \(a_i(i\in[1,n])\) 代表第
排列组合:公式及推导 排列组合:公式及推导 排列组合:公式及推导
饱和度
饱和度是色彩三属性之一,与色调(Hue)和亮度(Lightness/Brightness)并列,通常用来描述颜色的纯度或者色彩的鲜艳程度。在RGB色彩空间中,饱和度没有一个直接的计算公式,但可以通过转换到HSV(色调、饱和度、亮度)色彩空间来计算。 以下是计算饱和度的一种方法,它基于HSV色彩空间:
实战-行业攻防应急响应
实战-行业攻防应急响应 简介: 服务器场景操作系统 Ubuntu 服务器账号密码:root/security123 分析流量包在/home/security/security.pcap 相关jar包在/home/security/ruoyi/ruoyi-admin.jar 应急主机: 192.168
实战-行业攻防应急响应 实战-行业攻防应急响应 实战-行业攻防应急响应
FreeSWITCH对接http协议的tts服务
操作系统 :CentOS 7.6_x64 FreeSWITCH版本 :1.10.9 FreeSWITCH里面有个mod_tts_commandline模块,可以用来对接http协议的tts服务,今天整理下这方面的笔记,并提供相关演示效果及资源下载。 我将从以下几个方面进行展开: 自建tts服务模拟测
FreeSWITCH对接http协议的tts服务 FreeSWITCH对接http协议的tts服务 FreeSWITCH对接http协议的tts服务
Android网页投屏控制从入门到放弃
本文主要记录通过网页控制安卓设备相关的实践过程,通过从adb方案开始,到uiautomator2,以及最后放弃scrpy方案,在这个热闹的周末,正好闲暇的时间,了解过去不曾接触的知识,也是一个有趣的过程。
Android网页投屏控制从入门到放弃
在python项目的docker镜像里使用pdm管理依赖
前言 在 DjangoStarter 项目中,我已经使用 pdm 作为默认的包管理器,不再直接使用 pip 所以部署的时候 dockerfile 和 docker-compose 配置也得修改一下。 dockerfile 首先修改一下 dockerfile ARG PYTHON_BASE=3.11
编程技巧 --- 远程调试
引言 最近在做的项目上做了一些性能优化的工作,用到了 Visual Studio 远程调试,所以本篇文章整理一下远程调试技巧。 首先,了解一下 Visual Studio远程调试是什么? Visual Studio 的远程调试功能允许在本地调试远程计算机上运行的应用程序。用远程调试,可以在本地计算机
编程技巧 --- 远程调试 编程技巧 --- 远程调试 编程技巧 --- 远程调试
关于REACT范式的一些思考
关于REACT范式的一些思考 REACT范式经过近一年的探索,让我们在很多领域有了非常广泛的应用,它确实提升了很多之前无法解决的问题,比如大模型虽然在语言理解和交互式决策方面在任务中表现出令人印象深刻的表现,但是如何让模型基于解释来使用 LLMs 以交错方式生成推理跟踪和特定于任务的操作 一直是一个
关于REACT范式的一些思考 关于REACT范式的一些思考 关于REACT范式的一些思考