首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

最佳实践:解读GaussDB(DWS) 统计信息自动收集方案

编程知识
2024年08月07日 13:55
摘要:现在商用优化器大多都是基于统计信息进行查询代价评估,因此统计信息是否实时且准确对查询影响很大,特别是分布式数据库场景。本文详细介绍GaussDB(DWS)如何实现了一种轻量、实时、准确的统计信息自动收集方案。

本文分享自华为云社区《【最佳实践】GaussDB(DWS) 统计信息自动收集方案》,作者: leapdb。

一、统计信息收集痛点

  1. 何时做analyze,多做空耗系统资源,少做统计信息不及时。
  2. 多个数据源并发加工一张表,手动analyze不能并发。
  3. 数据修改后立即查询,统计信息实时性要求高。
  4. 需要关心每张表的数据变化和治理,消耗大量人力。

二、基本功能介绍

三、自动收集方案

GaussDB(DWS) 支持统计信息自动收集功能,主要解决统计信息收集不及时和不准确的问题。

手动采样:用户在作业中,手动发起的显示analyze。

轮询采样:autovacuum后台线程,轮询发起的analyze。

动态采样:查询时,优化器触发的runtime analyze。

前台动态采样:负责统计信息实时准确,信息放内存(有淘汰机制),一级锁(像查询一样轻量)。

autoanalyze=on;
autoanalyze_mode='light';

后台轮询采样:负责统计信息的持久化,写系统表(四级锁),不要求特别及时。

autovacuum_mode=mix或analyze;
--- 以前只有“后台轮询采样”,都由后台autovacuum线程控制做vacuum或analyze。
--- 后来开发“前台动态采样”,叫autoanalyze。
--- 请注意二者的区别。

二者都需要开启。

替代场景

统计信息基于收集时表数据生成,数据变化较多后可能失效。自动触发也是基于阈值(50+表大小*10%)。

总结:

  1. 小表变化<10%且数据特征变化明显,需要“调低阈值自动收集”。
  2. 调整过采样大小且实时性要求高的场景,需要“主动收集统计信息”。
  3. 外表和冷热表因访问性能问题,不支持自动,需要“主动收集统计信息”。

四、如何保证及时触发

【触发条件】“无统计信息” or “表的修改量超过一定阈值(默认“50 + 表大小 * 10%”)”

【触发场景】含stream计划的SQL都可触发动态采样,包括select和带条件的delete, update。

【修改计数】

1. 哪些修改行为会被记录?

DML: Insert, Update, Delete, Copy, Merge,会累加修改计数。

DDL: truncate table,truncate/exchange/drop partition, alter column type, alter distribute,由于CN无法获取DN修改计数,所以直接记录一个超大修改计数。

2. 跨CN查询场景,如何确保修改计数全局一致?

异步广播:autovacuum后台线程轮询检查时,向所有CN广播全局修改计数。修改计数达2/3时广播一次,此后每增10%再广播一次。

实时广播:单SQL修改超过tuple_change_sync_threshold(默认1W)条时,直接实时广播修改计数到其它CN。

总结:“修改计数记录”和“修改计数广播”,覆盖都比较全面,能够保证查询及时触发动态采样。

五、最佳实践

GaussDB(DWS) analyze使用指南8.1.3及以下版本

GaussDB(DWS) analyze使用指南8.2.0及以上版本

1.事务块中手动analyze堵塞其它业务

【业务场景】

BEGIN;
ANALYZE t_ucuser;
INSERT INTO t_user_name(project_id, account_id, name_id, uid, etl_time)
with t1 AS (
select project_id, account_id, name_id
from t_user_name
WHERE uid is null or uid = ''
)
select a.project_id,a.account_id,a.name_id, b.user_name AS uid, CURRENT_TIMESTAMP AS etl_time
from t1 a join t_ucuser b ON a.project_id = b.project_id AND a.account_id = b.account_id
ON CONFLICT(project_id,account_id,name_id) DO UPDATE
SET project_id=excluded.project_id, account_id=excluded.account_id, name_id=excluded.name_id, uid=excluded.uid, etl_time=excluded.etl_time;
END;

【问题根因】

a. 某数据湖用户,多个数据源按照不同的分区进行数据导入加工。

b. 事务块中有手动analyze,且事务块中后面的查询长时间执行不完。

c. 因analyze对表加四级锁长时间不能释放,导致其它相关表上的业务等锁超时报错。

【解决方案】开启light动态采样,去掉事务块中的手动analyze。

2. 多数据源并发加工同一张表的不同分区

【业务场景】

为了保证用户查询表总有数据,需要把加工过程放到一个事务里面。堵塞其它人的动态采样。

begin;
alter table tab_partition truncate partition P2023_03;
insert into tab_partition select * from t1;
end;

【问题根因】alter table truncate parition对分区加8级锁,事务过程中长时间持锁。

【解决方案】使用exchange partition

CREATE TABLE IF NOT EXISTS tab_tmp1(like tab_partition INCLUDING DROPCOLUMNS INCLUDING DISTRIBUTION INCLUDING STORAGE INCLUDING RELOPTIONS);
INSERT INTO tab_tmp1 SELECT * FROM t1;
ALTER TABLE tab_partition exchange partition (P2023_03) WITH TABLE tab_tmp1;

3.多表并发反序analyze导致统计信息收集失败

【业务场景】

a. 某银行客户,多个表进行批处理数据加工,开启了normal类型动态采样。

b. 查询A先对t1表触发动态采样,再对t2表触发动态采样。

c. 查询B先对t2表触发动态采样,再对t1表触发动态采样。

d. 触发动态采样的顺序不一致,互相申请四级锁导致申锁超时,统计信息未收集。

【问题根因】多人同时按不同顺序analyze多表导致死锁。

【解决方案】开启light动态采样,仅加一级锁不再有四级锁冲突。

4.刚导入的数据不在统计信息中导致查询计划差

【业务场景】

a. 某财经用户,按照月度视为会计期,月初时导入少量数据,然后马上查询。

b. 触发了动态采样,但采集不到最新会计期的少量数据。

【问题根因】新插入数据占比小,及时触发了动态采样但采集不到,导致估算偏差大。

【解决方案】

a. 开启统计信息推算enable_extrapolation_stats功能,根据上一个会计期的统计信息推算当前会计期数据特征。

b. 不提高采样大小,利用历史信息增强统计信息准确性。

5.随机函数质量差导致数据特征统计不准

【业务场景】

a. 某银行客户,按月度条件进行关联查询

b. 多次analyze,最多数据月份在MCV中占比从13%~30%大幅波动

c. 详细输出样本点位置和采样随机数发现,随机数(小数点后6位)生成重复度高导致采样扎堆儿严重。

【问题根因】采样随机数不够随机,样本采集不均匀导致MCV数据特征统计偏差。

【解决方案】

a. 每次传入随机种子再生成随机数,提高随机性和并发能力。控制参数random_function_version。

b. 不提高采样大小,提升随机数质量增强统计信息准确性。

6.样本分布不均匀导致数据特征统计不准

【业务场景】

a. tpc-h的lineitem表l_orderkey列,数据每4~8条批量重复。即同一个订单购买多个商品。

b. 传统采样算法由于采样不均匀,采集到的重复数据稍多,导致采集的distinct值偏低。

【问题根因】数据特征分布不均匀,采样无法抓准数据特征,distinct值高的场景统计出的distinct值偏低。

【解决方案】

a. 使用自研的优化蓄水池采样算法,控制参数analyze_sample_mode=2,让采样更加均匀,以提升统计信息准确性。

b. 如果上述方法没有达到预期效果,可以手动修改distinct值。

select APPROX_COUNT_DISTINCT(l_orderkey) from lineitem; --近似计算distinct值
alter table lineitem alter l_orderkey set (n_distinct=10000); --手动设置distinct值,然后再analyze即可。

 

点击关注,第一时间了解华为云新鲜技术~

From:https://www.cnblogs.com/huaweiyun/p/18347040
本文地址: http://shuzixingkong.net/article/879
0评论
提交 加载更多评论
其他文章 QWen2-72B-Instruct模型安装部署过程
最近在给我们的客户私有化部署我们的TorchV系统,客户给的资源足够充裕,借此机会记录下部署千问72B模型的过程,分享给大家! 一、基础信息 操作系统:Ubuntu 22.04.3 LTS GPU: A800(80GB) * 8 内存:1TB 二、软件信息 Python: 3.10 Pytorch:
QWen2-72B-Instruct模型安装部署过程 QWen2-72B-Instruct模型安装部署过程 QWen2-72B-Instruct模型安装部署过程
零基础学习人工智能—Python—Pytorch学习(一)
前言 其实学习人工智能不难,就跟学习软件开发一样,只是会的人相对少,而一些会的人写文章,做视频又不好好讲。 比如,上来就跟你说要学习张量,或者告诉你张量是向量的多维度等等模式的讲解;目的都是让别人知道他会这个技术,但又不想让你学。 对于学习,多年的学习经验,和无数次的回顾学习过程,都证明了一件事,如
零基础学习人工智能—Python—Pytorch学习(一)
【VMware ESXi】把硬盘当内存用?VMware 内存分层(Memory Tiering),你值得拥有!
VMware vSphere 8.0 U3 发布了一个非常有意义的功能叫内存分层(Memory Tiering),以利用基于 PCIe 的 NVMe 设备充当第二层(辅助)内存,从而使 ESXi 主机的可用物理内存(RAM)增加。从本质上讲,内存分层就是利用较便宜的 NVMe 设备充当物理内存,以此
【VMware ESXi】把硬盘当内存用?VMware 内存分层(Memory Tiering),你值得拥有! 【VMware ESXi】把硬盘当内存用?VMware 内存分层(Memory Tiering),你值得拥有! 【VMware ESXi】把硬盘当内存用?VMware 内存分层(Memory Tiering),你值得拥有!
电子表格转身购物车:三步轻松实现
最新技术资源(建议收藏) https://www.grapecity.com.cn/resources/ 在我们的项目当中,经常需要添加一些选择界面,让用户直观地进行交互,比如耗材、办公用品、设计稿或者其它可以选择的内容。 在线商城的商品目录和购物车无疑是一种大家都很熟悉的交互方式,但是在实际开发中
电子表格转身购物车:三步轻松实现 电子表格转身购物车:三步轻松实现 电子表格转身购物车:三步轻松实现
删库了不用跑路!binlog恢复数据实操
各位道友大家好呀! 想必道友们或多或少都听说过MySQL的binlog的作用,它记录了数据库整个的生命周期,可用于恢复数据或者从库同步数据。 那么如果发生了数据库误删,具体该怎样恢复数据呢? 下面就以一个例子来给道友们演示一下,让我们开始吧!do it! 数据备份 首先,数据库要定时进行备份,因为如
删库了不用跑路!binlog恢复数据实操 删库了不用跑路!binlog恢复数据实操 删库了不用跑路!binlog恢复数据实操
架构知识点(三)
动态分支预测是一种通过记录和分析程序运行时分支行为的历史信息来预测未来分支的机制。这种技术旨在提高处理器流水线的效率,减少分支指令引起的流水线停顿。你提到的通过查找指令地址判断分支行为的方法,就是一种动态分支预测的实现。 体现动态分支预测的几个关键点 历史信息记录: 记录分支行为:动态分支预测器会记
(数据科学学习手札163)ibis:极具潜力的Python数据分析框架
本文完整代码及附件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,今天要给大家介绍的Python框架叫做ibis,没错,跟著名连锁酒店宜必思同名,其作者是创造了pandas、Arrow等著名
(数据科学学习手札163)ibis:极具潜力的Python数据分析框架 (数据科学学习手札163)ibis:极具潜力的Python数据分析框架 (数据科学学习手札163)ibis:极具潜力的Python数据分析框架
EF Core连接PostgreSQL数据库
PostgreSQL数据库介绍 PostgreSQL是一个功能强大的开源对象关系型数据库管理系统(RDBMS)。最初于1986年在加州大学伯克利分校的POSTGRES项目中诞生,PostgreSQL以其稳定性、灵活性和扩展性而著称。它支持丰富的数据类型、复杂的查询、事务完整性、多版本并发控制(MVC
EF Core连接PostgreSQL数据库 EF Core连接PostgreSQL数据库 EF Core连接PostgreSQL数据库