首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

零基础学习人工智能—Python—Pytorch学习(一)

编程知识
2024年08月07日 09:53

前言

其实学习人工智能不难,就跟学习软件开发一样,只是会的人相对少,而一些会的人写文章,做视频又不好好讲。
比如,上来就跟你说要学习张量,或者告诉你张量是向量的多维度等等模式的讲解;目的都是让别人知道他会这个技术,但又不想让你学。
对于学习,多年的学习经验,和无数次的回顾学习过程,都证明了一件事,如果一篇文章,一个视频,一个课程,我没学明白,那问题一定不在我,而是上课的主动或被动的不想让我学会,所以,出问题的一定是学习资料。
比如英语,当真会了以后,再回去看自己之前学过的课,就知道了,那是英语老师没好好教,哪有真正想让你学会英语的人,会告诉你【come=来,out=出去】呀,认认真真按高中大学老师教的方法学习英语。记单词背词组,一百年学不会英语。
比如线性代数,等会了以后,再回去看之前看不懂的课程视频,就知道了,是上课老师估计模糊的关键信息。
学习软件开发,相信大家也都有类似的经验,当你想学一个知识点时,各种搜索,就是看不懂,最后学会的原因只有两种,1,你找到了真正的教你知识的文章,2,你通过搜索的信息,自己悟了出来。这其实就是在证明,绝大多数的文章和视频都不想真正教你,包括正规学校的老师和教材。

入门学习

首先,介绍一下我学习的资料,我通过一通搜索,终于找到了最好的学习资料,该视频是认真教你学习的,唯一的缺点可能就是,上课的人说的是英语,有点印度口音。不过,个人感觉他带点口语,反而更好听懂。
重点关注一下下面单词视频里会多次提到,注意了后就不会被英语卡住了。
numpy:这个单词,这不是个单词,但是是python的库。
vector:向量,下面有解释。
tensor:张量,下面有解释。
gradient:梯度,指的就是我下面的提到的求偏导数。
地址是:https://www.youtube.com/watch?v=exaWOE8jvy8&list=PLqnslRFeH2UrcDBWF5mfPGpqQDSta6VK4&index=1

安装

pytorch和tensorflow都是做人工智能的,prtorch的函数相对更友好,所以入门更高效。
pytorch官网地址:https://pytorch.org/get-started/locally/
使用pytorch前,先安装环境,我这里使用了vscode,安装完vscode后,在扩展里把python的包瞎按一些就行。
一般来讲学习都使用cpu版本。安装命令如下:

pip3 install torch torchvision torchaudio

如果使用gpu,安装命令如下:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124

安装完成后,执行代码,如果执行成功,则安装成功。

import torch
x =torch.ones(1)
print(x)

名词介绍

矩阵:就是我们的表。
向量(vector):这种只有一行/一列的矩阵,叫向量。

1,1,0

二维张量(tensor2D):这有多行多列的矩阵叫二维张量。

1,1,0
1,0,1

三维张量(tensor3D),就是三维数组。
多维张量同多维数组。
为什么叫向量或者张量?我们把[1,1,0]换个想象就行,[1,1,0]是自原点向x=1,y=1,z=0发射出去的线,那[1,1,0]就不在是个数据了,就变成张量了。但本质还是数据。这地方不要细究,理解就可以了,毕竟我们不是研究数学的。

代码入门

使用pytorch进行张量的基础。

import torch
import numpy as np
x=torch.empty(1) # 创建一个只有一个元素的向量(vector),元素值是未定义的,未定义的就是0,打印出来是【0.】,这是因为默认的元素类型是float32
print(x)
x=torch.empty(3)  # 创建一个有三个元素的向量(vector),元素值是未定义的
print(x)
x=torch.empty(3,2)  # 创建一个矩阵,,元素值是未定义的
print(x) 

x=torch.rand(3,2)  # 创建一个3*2的矩阵,并随机赋值
print(x)
x=torch.zeros(3,2)  # 创建一个3*2的矩阵,并赋值0
print(x)

x=torch.ones(2,2)  # 创建一个2*2的矩阵,并赋值1,打印出来是【1.】
print(x)
print("打印类型")
print(x.dtype) #dtype是data type,会打印出元素的类型,打印内容是torch.float32
x=torch.ones(3,3,dtype=torch.int)  # 创建一个3*3的矩阵,并赋值1,打印出来是【1】,这会就不带.了
print(x) 
x=torch.ones(3,3,dtype=torch.double)  # 创建一个3*3的矩阵,并赋值1,打印出来是【1.】,double类型又带.了
print(x)
print(x.size()) #size是个函数,这样打印会打印出toString()的感觉,值是【torch.Size([3, 3])】
print(x.size().numel()) # 元素个数,值是9
x=torch.tensor([2.2,3.1]) # 自定义张量
print(x)
print("===========加法============")
x=torch.ones(3,3,dtype=torch.int)  # 创建一个3*3的矩阵,并赋值1,打印出来是【1】,这会就不带.了
print(x)
y =torch.ones(3,3,dtype=torch.int)   
print(y)
z=x+y #矩阵相加
print(z)
z=torch.add(x,y) #矩阵相加
print(z)
print("===========计算print(y.add_(x))============")
print(y.add_(x)) #把x加到y中去
print("===========减法============")
z=x-y #矩阵相减
print(z)
z=torch.sub(x,y) #矩阵相减
print(z)
print("===========计算print(y.sub_(x))============")
print(y.sub_(x)) #把x减去从y中
print("===========乘法============") #这个乘法是元素相对的相乘,而不是线性代数的 A23*A32
z=x*y #矩阵相乘 
print(z)
z=torch.mul(x,y)
print(z)
print(y.mul_(x))
print("===========除法============")
z=x/y #矩阵相乘除
print(z)
z=torch.div(x,y)
print(z)
print("===========列表============")
x=torch.rand(5,4)  # 创建一个3*2的矩阵,并随机赋值
print(x[:,0]) #打印全部行,但只取第一列
print(x[0,:]) #打印全部列,但只取第一行
print(x[0,0]) #打印i=0 j=0的元素
print(x[1,1].item()) #如果只取一个元素值,则可以取他的真实值
print(x)
print("===========view可以resize tensor============")
x=torch.rand(5,4) 
y=x.view(20) #返回一个新的张量,这个是返回一个1行的20个元素的张量
print(y)
y=x.view(-1,10)
print(y) # 这个是返回2行,每行10个,他做了自动适配
print(y.size())#输出size
#print(x.view(-1,7)) # 这个自动适配不了,因为不能被7整除
print("===========numpy numpy只能在cpu上使用,不能在gpu上使用============")
a=torch.ones(5) #行向量,值是1,元素是5
b=a.numpy() #返回 numpy.ndarray类型的numpy下的张量,相当于转了类型,用于计算,该函数有参数 默认是false,表示使用cpu
print(b,type(b))
 #这里虽然a转了类型到b,但b和a是对象封装,引用地址一样 所以当我们给a+1时,b也会+1
a.add_(1)
print(a)
print(b)#虽然a b类型不一样,但值都改变了
print("===========从numpy.ndarray转成tensor张量的方式============")
a = np.ones(5) #行向量 5元素 值是1
b =torch.from_numpy(a) #numpy的ndarray转tensor 同样是装箱拆箱 修改a的值 b也会变
a+=1
print(b)
print(a)
print("===========gpu============")
if(torch.cuda.is_available()):
    #CUDA 是指 NVIDIA 的并行计算平台和编程模型,它利用图形处理单元 (GPU) 的处理能力来加速计算密集型任务
    device =torch.device("cuda") #获取cuda驱动
    x=torch.ones(5,device=device)#创建时指定了使用cpu的内存
    y=torch.ones(5)#创建时使用cpu的内存
    y=y.to(device)#将y转到gpu
    z=x+y #这个操作是在gpu的内存上进行了
    #z.numpy()#这个不能执行,因为z在gpu的内存上
    z =z.to("cpu") #转回到cpu
else:
    print("this is cpu")

requires_grad例子。
这里要点高数基础。
首先是导数,这个大家忘了的可以百度一下。
偏导数:这个就是f(x,y)=x+y这样的函数求导,只是对x求导时,把y当常量c,反之亦然。

print("===========requires_grad 例子1============")
#使用自动微分(autograd)
x=torch.ones(5,requires_grad=True) #默认requires_grad是false  1,计算梯度:requires_grad 是一个布尔参数,用于指定一个张量是否需要计算梯度 2,自动求导:使用 requires_grad=True 的张量进行的所有操作都会被记录,以便稍后使用 backward() 方法进行自动求导。
print(x)
# 对张量进行一些操作
y = x + 2
print(y)
# 再进行一些操作
z = y * y * 3
print("======分割线1=====")
print(z)
out = z.mean() #是一个张量操作,它计算张量 z 的所有元素的平均值。 看做f(x)=(x1+x2+x3+x4)/4 然后对每个x求偏导,在把值带回去
print("======分割线2=====")
print(out)
# 进行反向传播,计算梯度
out.backward()
print("======分割线3=====")
print(x.grad)  # 输出x的梯度
print("===========requires_grad 例子2============")
# 创建一个张量,并指定需要计算梯度
x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True) 
# 定义一个标量函数 平方在求和 相当于函数 f()= x1²+ x2²,+ x3²
y = x.pow(2).sum() 
# 进行反向传播,计算梯度 x`的梯度,它对应于函数 f(x1,x2,x3)= x1²+ x2²+ x3², 三个偏导数就是 2x1,2x2,2x3,带入tensor的值 即'[2x1,2x2,2x3]
y.backward() 
# 输出 x 的梯度
print(x.grad)  # 输出 tensor([2., 4., 6.])
print("===========requires_grad 例子3============")
# 创建一个张量,并指定需要计算梯度
x = torch.tensor([[1.0, 2.0],[4.0, 5.0]], requires_grad=True) 
# 定义一个标量函数 平方在求和 相当于函数 f()= x1²+ x2²+ x3²+ x4²
y = x.pow(2).sum() 
# 进行反向传播,计算梯度 x`的梯度,这里是2*2矩阵,但计算的时候,就按元素个数算x,没有行列ij。
# 它对应于函数 f(x1,x2,x3,x4)= x1²+ x2²,+ x3²+ x4², 四个偏导数就是 2x1,2x2,2x3,2x4,带入tensor的值 即'[2x1,2x2,2x4,2x5]
y.backward() 
# 输出 x 的梯度
print(x.grad)  # 输出 tensor([[2, 4][8,10]])

基础学习就先到这。


注:此文章为原创,任何形式的转载都请联系作者获得授权并注明出处!



若您觉得这篇文章还不错,请点击下方的【推荐】,非常感谢!

https://www.cnblogs.com/kiba/p/18346596

From:https://www.cnblogs.com/kiba/p/18346596
本文地址: http://shuzixingkong.net/article/877
0评论
提交 加载更多评论
其他文章 【VMware ESXi】把硬盘当内存用?VMware 内存分层(Memory Tiering),你值得拥有!
VMware vSphere 8.0 U3 发布了一个非常有意义的功能叫内存分层(Memory Tiering),以利用基于 PCIe 的 NVMe 设备充当第二层(辅助)内存,从而使 ESXi 主机的可用物理内存(RAM)增加。从本质上讲,内存分层就是利用较便宜的 NVMe 设备充当物理内存,以此
【VMware ESXi】把硬盘当内存用?VMware 内存分层(Memory Tiering),你值得拥有! 【VMware ESXi】把硬盘当内存用?VMware 内存分层(Memory Tiering),你值得拥有! 【VMware ESXi】把硬盘当内存用?VMware 内存分层(Memory Tiering),你值得拥有!
电子表格转身购物车:三步轻松实现
最新技术资源(建议收藏) https://www.grapecity.com.cn/resources/ 在我们的项目当中,经常需要添加一些选择界面,让用户直观地进行交互,比如耗材、办公用品、设计稿或者其它可以选择的内容。 在线商城的商品目录和购物车无疑是一种大家都很熟悉的交互方式,但是在实际开发中
电子表格转身购物车:三步轻松实现 电子表格转身购物车:三步轻松实现 电子表格转身购物车:三步轻松实现
深度解读昇腾CANN小shape算子计算优化技术,进一步减少调度开销
摘要:Host调度模式下,GE将模型中算子的执行单元划分为Host CPU执行与Device(昇腾AI处理器)执行两大类。 本文分享自华为云社区《深度解读昇腾CANN小shape算子计算优化技术,进一步减少调度开销》,作者:昇腾CANN。 GE(Graph Engine)将模型的调度分为Host调度
深度解读昇腾CANN小shape算子计算优化技术,进一步减少调度开销 深度解读昇腾CANN小shape算子计算优化技术,进一步减少调度开销 深度解读昇腾CANN小shape算子计算优化技术,进一步减少调度开销
.NET 免费开源工业物联网网关
IoTClient 是一个针对物联网 (IoT) 领域的开源客户端库,它主要用于实现与各种工业设备之间的通信。这个库是用 C# 编写的,并且基于 .NET Standard 2.0,这意味着可以用于多个版本的.NET,包括 .NET Framework、.NET Core、.NET 5 及以上版本,
.NET 免费开源工业物联网网关 .NET 免费开源工业物联网网关 .NET 免费开源工业物联网网关
QWen2-72B-Instruct模型安装部署过程
最近在给我们的客户私有化部署我们的TorchV系统,客户给的资源足够充裕,借此机会记录下部署千问72B模型的过程,分享给大家! 一、基础信息 操作系统:Ubuntu 22.04.3 LTS GPU: A800(80GB) * 8 内存:1TB 二、软件信息 Python: 3.10 Pytorch:
QWen2-72B-Instruct模型安装部署过程 QWen2-72B-Instruct模型安装部署过程 QWen2-72B-Instruct模型安装部署过程
最佳实践:解读GaussDB(DWS) 统计信息自动收集方案
摘要:现在商用优化器大多都是基于统计信息进行查询代价评估,因此统计信息是否实时且准确对查询影响很大,特别是分布式数据库场景。本文详细介绍GaussDB(DWS)如何实现了一种轻量、实时、准确的统计信息自动收集方案。 本文分享自华为云社区《【最佳实践】GaussDB(DWS) 统计信息自动收集方案》,
最佳实践:解读GaussDB(DWS) 统计信息自动收集方案 最佳实践:解读GaussDB(DWS) 统计信息自动收集方案 最佳实践:解读GaussDB(DWS) 统计信息自动收集方案
删库了不用跑路!binlog恢复数据实操
各位道友大家好呀! 想必道友们或多或少都听说过MySQL的binlog的作用,它记录了数据库整个的生命周期,可用于恢复数据或者从库同步数据。 那么如果发生了数据库误删,具体该怎样恢复数据呢? 下面就以一个例子来给道友们演示一下,让我们开始吧!do it! 数据备份 首先,数据库要定时进行备份,因为如
删库了不用跑路!binlog恢复数据实操 删库了不用跑路!binlog恢复数据实操 删库了不用跑路!binlog恢复数据实操
架构知识点(三)
动态分支预测是一种通过记录和分析程序运行时分支行为的历史信息来预测未来分支的机制。这种技术旨在提高处理器流水线的效率,减少分支指令引起的流水线停顿。你提到的通过查找指令地址判断分支行为的方法,就是一种动态分支预测的实现。 体现动态分支预测的几个关键点 历史信息记录: 记录分支行为:动态分支预测器会记