Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 222142 | Accepted: 67092 |
Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Output
Sample Input
5 17
Sample Output
4
Hint
*步行:FJ可以在一分钟内从任何一个点X移动到点X-1或X+1
*传送:FJ可以在一分钟内从任何一个X点移动到2*X点
输出FJ抓带到奶牛需要的最短时间,以分钟为单位
思路:
明显的BFS,几年没摸,重新回顾BFS,手写结构体构造先进先出的队列,
AC代码:
1 #include<stdio.h> 2 int iswalk[100050]; 3 int p;//实时移动数组下标,视作队尾添加 4 int q;//取数,视作队头出队 5 int N, K; 6 struct trajectory 7 { 8 int step; 9 int num; 10 }; 11 struct trajectory tra[100050]; 12 int main() 13 { 14 scanf("%d %d", &N, &K); 15 tra[q].num = N; 16 tra[q].step = 0; 17 iswalk[N] = 1; 18 while(q <= p) 19 { 20 if(tra[q].num == K){ 21 printf("%d\n", tra[q].step); 22 break; 23 } 24 else 25 { 26 if(iswalk[tra[q].num - 1] == 0 && (tra[q].num - 1 >= 0) && (tra[q].num - 1) <= 100000){ 27 iswalk[tra[q].num - 1] = 1; 28 p ++; 29 tra[p].num = tra[q].num - 1; 30 tra[p].step = tra[q].step + 1; 31 } 32 if(iswalk[tra[q].num + 1] == 0 && (tra[q].num + 1 >= 0) && (tra[q].num + 1) <= 100000){ 33 iswalk[tra[q].num + 1] = 1; 34 p ++; 35 tra[p].num = tra[q].num + 1; 36 tra[p].step = tra[q].step + 1; 37 } 38 if(iswalk[tra[q].num * 2] == 0 && (tra[q].num * 2) >= 0 && (tra[q].num * 2) <= 100000){ 39 iswalk[tra[q].num * 2] = 1; 40 p ++; 41 tra[p].num = tra[q].num * 2; 42 tra[p].step = tra[q].step + 1; 43 } 44 45 q ++; 46 } 47 } 48 }
起手错误写法:
一:for的DFS(POJ3984的代码,都是BFS,于是推翻并找到奶牛这个基础题来写)
1 #include<stdio.h> 2 int dir[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; 3 int bfs(int x, int y); 4 int maze[5][5]; 5 int step; 6 int evestep[25][2];//记录轨迹 7 int OnGo[5][5];//是否走过这个点 8 int main() 9 //int dir[4][2] = {(-1, 0), (1, 0), (0, -1), (0, 1)}; 10 { 11 // int step; 12 for(int i = 0; i < 5; i ++) 13 for(int j = 0; j < 5; j ++) 14 scanf("%d", &maze[i][j]); 15 int x = 0, y = 0; 16 OnGo[0][0] == 1; 17 // int bfs(x, y); 18 bfs(x, y); 19 } 20 int bfs(int x, int y) 21 { 22 for(int i = 0; i < 4; i ++) 23 { 24 x += dir[i][0]; 25 y += dir[i][1]; 26 if(maze[x][y] == 1 || x < 0 || y < 0 || x > 4 || y > 4) 27 continue; 28 else if(maze[x][y] == 0 && OnGo[x][y] == 0) 29 { 30 OnGo[x][y] == 1; 31 step++; 32 evestep[step][0] = x; 33 evestep[step][1] = y; 34 bfs(x, y); 35 } 36 } 37 //} 38 //推翻重写,昨天写的是DFS 39 40 //BFS
二:推翻重写后,依旧是DFS的思路,以为BFS会携带每一层的step
1 #include<stdio.h> 2 int tra[100050]; 3 int iswalk[100050]; 4 int p, q; 5 int bfs(int FJ_x, int step) 6 { 7 if(FJ_x == K) 8 return step; 9 else 10 { 11 if((FJ_x - 1) >= 0 && iswalk[FJ_x - 1] == 0){ 12 iswalk[FJ_x - 1] = 1; 13 step ++; 14 bfs(FJ_x - 1, step) 15 } 16 if((FJ_x + 1) >= 0 && iswalk[FJ_x + 1] == 0){ 17 iswalk[FJ_x + 1] = 1; 18 step ++; 19 bfs(FJ_x + 1, step) 20 } 21 if((FJ_x * 2) >= 0 && iswalk[FJ_x * 2] == 0){ 22 iswalk[FJ_x * 2] = 1; 23 step ++; 24 bfs(FJ_x * 2, step) 25 } 26 } 27 }