首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

yolov5+csl标签.(Oriented Object Detection)(Rotation Detection)(Ro

行业研究 6.18MB 18 需要积分: 1
立即下载

资源介绍:

yolov5+csl标签.(Oriented Object Detection)(Rotation Detection)(Rotated BBox)基于yolov5的旋转目标检测_yolo
馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021. * [About Weights & Biases](#about-weights-&-biases) * [First-Time Setup](#first-time-setup) * [Viewing runs](#viewing-runs) * [Disabling wandb](#disabling-wandb) * [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage) * [Reports: Share your work with the world!](#reports) ## About Weights & Biases Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions. Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows: * [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time * [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically * [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization * [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators * [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently * [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models ## First-Time Setup
Toggle Details When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device. W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as: ```shell $ python train.py --project ... --name ... ``` YOLOv5 notebook example: Open In Colab Open In Kaggle Screen Shot 2021-09-29 at 10 23 13 PM
## Viewing Runs
Toggle Details Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in realtime . All important information is logged: * Training & Validation losses * Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95 * Learning Rate over time * A bounding box debugging panel, showing the training progress over time * GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage** * System: Disk I/0, CPU utilization, RAM memory usage * Your trained model as W&B Artifact * Environment: OS and Python types, Git repository and state, **training command**

Weights & Biases dashboard

## Disabling wandb * training after running `wandb disabled` inside that directory creates no wandb run ![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png) * To enable wandb again, run `wandb online` ![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png) ## Advanced Usage You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.

1: Train and Log Evaluation simultaneousy

This is an extension of the previous section, but it'll also training after uploading the dataset. This also evaluation Table Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets, so no images will be uploaded from your system more than once.
Usage Code $ python train.py --upload_data val ![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png)

2. Visualize and Version Datasets

Log, visualize, dynamically query, and understand your data with W&B Tables. You can use the following command to log your dataset as a W&B Table. This will generate a {dataset}_wandb.yaml file which can be used to train from dataset artifact.
Usage Code $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. ![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)

3: Train using dataset artifact

When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that can be used to train a model directly from the dataset artifact. This also logs evaluation
Usage Code $ python train.py --data {data}_wandb.yaml ![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)

4: Save model checkpoints as artifacts

To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval. You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
Usage Code $ python train.py --save_period 1 ![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)

5: Resume runs from checkpoint artifacts.

Any run can be resumed using artifacts if the --resume argument starts with聽wandb-artifact://聽prefix followed by the run path, i.e,聽wandb-artifact://username/project/runid . This doesn't require the model checkpoint to be present on the local system.
Usage Code $ python train.py --resume wandb-artifact://{run_path} ![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)

6: Resume runs from dataset artifact & checkpoint artifacts.

Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot --upload_dataset<

资源文件列表:

yolov5+csl标签.(Oriented Object Detection)(Rotation Detection)(Rotated BBox)基于yolov5的旋转目标检测_yolov5_obb 大约有148个文件
  1. yolov5 + csl_label.(Oriented Object Detection)(Rotation Detection)(Rotated BBox)基于yolov5的旋转目标检测_yolov5_obb/项目内附说明/如果解压失败请用ara软件解压.txt 42B
  2. yolov5_obb-master/Arial.ttf 755.11KB
  3. yolov5_obb-master/CONTRIBUTING.md 4.87KB
  4. yolov5_obb-master/detect.py 12.77KB
  5. yolov5_obb-master/Dockerfile 2.11KB
  6. yolov5_obb-master/export.py 21.26KB
  7. yolov5_obb-master/hubconf.py 6.23KB
  8. yolov5_obb-master/LICENSE 34.3KB
  9. yolov5_obb-master/README.md 4.62KB
  10. yolov5_obb-master/requirements.txt 926B
  11. yolov5_obb-master/setup.cfg 923B
  12. yolov5_obb-master/test.txt 6.94KB
  13. yolov5_obb-master/train.py 32.65KB
  14. yolov5_obb-master/tutorial.ipynb 55.67KB
  15. yolov5_obb-master/val.py 20.12KB
  16. yolov5_obb-master/data/dotav15_poly.yaml 847B
  17. yolov5_obb-master/data/dotav1_poly.yaml 819B
  18. yolov5_obb-master/data/DroneVehicle_poly.yaml 550B
  19. yolov5_obb-master/data/yolov5obb_demo.yaml 791B
  20. yolov5_obb-master/data/yolov5obb_demo_split.yaml 866B
  21. yolov5_obb-master/data/hyps/obb/hyp.finetune_dota.yaml 480B
  22. yolov5_obb-master/data/hyps/obb/hyp.finetune_dota_CloseAug.yaml 520B
  23. yolov5_obb-master/data/hyps/obb/hyp.finetune_DroneVehicle.yaml 485B
  24. yolov5_obb-master/data/hyps/obb/hyp.paper.yaml 488B
  25. yolov5_obb-master/data/scripts/download_weights.sh 523B
  26. yolov5_obb-master/dataset/dataset_demo/imgnamefile.txt 6B
  27. yolov5_obb-master/dataset/dataset_demo/images/P0032.png 5.3MB
  28. yolov5_obb-master/dataset/dataset_demo/labelTxt/P0032.txt 3.49KB
  29. yolov5_obb-master/docs/ChangeLog.md 1.07KB
  30. yolov5_obb-master/docs/detection.png 296.46KB
  31. yolov5_obb-master/docs/GetStart.md 6.65KB
  32. yolov5_obb-master/docs/install.md 1.67KB
  33. yolov5_obb-master/docs/results.png 110.54KB
  34. yolov5_obb-master/docs/train_batch6.jpg 87.7KB
  35. yolov5_obb-master/docs/YOLOv5_README.md 14.4KB
  36. yolov5_obb-master/DOTA_devkit/DOTA.py 4.15KB
  37. yolov5_obb-master/DOTA_devkit/DOTA2COCO.py 5.57KB
  38. yolov5_obb-master/DOTA_devkit/DOTA2JSON.py 3.67KB
  39. yolov5_obb-master/DOTA_devkit/dota_evaluation_task1.py 13.28KB
  40. yolov5_obb-master/DOTA_devkit/dota_evaluation_task2.py 9.87KB
  41. yolov5_obb-master/DOTA_devkit/dota_poly2rbox.py 7.66KB
  42. yolov5_obb-master/DOTA_devkit/dota_utils.py 10.18KB
  43. yolov5_obb-master/DOTA_devkit/hrsc2016_evaluation.py 10.74KB
  44. yolov5_obb-master/DOTA_devkit/ImgSplit.py 9.99KB
  45. yolov5_obb-master/DOTA_devkit/ImgSplit_multi_process.py 11.77KB
  46. yolov5_obb-master/DOTA_devkit/mAOE_evaluation.py 7.91KB
  47. yolov5_obb-master/DOTA_devkit/polyiou.cpp 3.88KB
  48. yolov5_obb-master/DOTA_devkit/polyiou.h 202B
  49. yolov5_obb-master/DOTA_devkit/polyiou.i 258B
  50. yolov5_obb-master/DOTA_devkit/polyiou.py 7.58KB
  51. yolov5_obb-master/DOTA_devkit/polyiou_wrap.cxx 263.78KB
  52. yolov5_obb-master/DOTA_devkit/prepare_dota1_ms.py 3.49KB
  53. yolov5_obb-master/DOTA_devkit/prepare_hrsc2016.py 714B
  54. yolov5_obb-master/DOTA_devkit/ResultEnsembleNMS_multi_process.py 9.96KB
  55. yolov5_obb-master/DOTA_devkit/ResultMerge.py 5.68KB
  56. yolov5_obb-master/DOTA_devkit/ResultMerge_multi_process.py 9.81KB
  57. yolov5_obb-master/DOTA_devkit/results_ensemble.py 2.46KB
  58. yolov5_obb-master/DOTA_devkit/results_obb2hbb.py 2.27KB
  59. yolov5_obb-master/DOTA_devkit/setup.py 445B
  60. yolov5_obb-master/DOTA_devkit/SplitOnlyImage.py 2.32KB
  61. yolov5_obb-master/DOTA_devkit/SplitOnlyImage_multi_process.py 3.7KB
  62. yolov5_obb-master/DOTA_devkit/ucasaod_evaluation.py 10.65KB
  63. yolov5_obb-master/DOTA_devkit/__init__.py
  64. yolov5_obb-master/DOTA_devkit/poly_nms_gpu/Makefile 56B
  65. yolov5_obb-master/DOTA_devkit/poly_nms_gpu/nms_wrapper.py 560B
  66. yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_nms.cpp 344.34KB
  67. yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_nms.hpp 298B
  68. yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_nms.pyx 875B
  69. yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_nms_kernel.cu 10.72KB
  70. yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_nms_test.py
  71. yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_overlaps.cpp 327.72KB
  72. yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_overlaps.hpp 106B
  73. yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_overlaps.pyx 552B
  74. yolov5_obb-master/DOTA_devkit/poly_nms_gpu/poly_overlaps_kernel.cu 12.54KB
  75. yolov5_obb-master/DOTA_devkit/poly_nms_gpu/setup.py 5.89KB
  76. yolov5_obb-master/DOTA_devkit/poly_nms_gpu/__init__.py 82B
  77. yolov5_obb-master/models/common.py 29.82KB
  78. yolov5_obb-master/models/experimental.py 4.48KB
  79. yolov5_obb-master/models/tf.py 20.23KB
  80. yolov5_obb-master/models/yolo.py 15.74KB
  81. yolov5_obb-master/models/yolov5l.yaml 1.37KB
  82. yolov5_obb-master/models/yolov5m.yaml 1.37KB
  83. yolov5_obb-master/models/yolov5n.yaml 1.37KB
  84. yolov5_obb-master/models/yolov5s.yaml 1.37KB
  85. yolov5_obb-master/models/yolov5x.yaml 1.37KB
  86. yolov5_obb-master/models/__init__.py
  87. yolov5_obb-master/models/hub/anchors.yaml 3.26KB
  88. yolov5_obb-master/models/hub/yolov3-spp.yaml 1.53KB
  89. yolov5_obb-master/models/hub/yolov3-tiny.yaml 1.2KB
  90. yolov5_obb-master/models/hub/yolov3.yaml 1.52KB
  91. yolov5_obb-master/models/hub/yolov5-bifpn.yaml 1.39KB
  92. yolov5_obb-master/models/hub/yolov5-fpn.yaml 1.19KB
  93. yolov5_obb-master/models/hub/yolov5-p2.yaml 1.62KB
  94. yolov5_obb-master/models/hub/yolov5-p6.yaml 1.66KB
  95. yolov5_obb-master/models/hub/yolov5-p7.yaml 2.03KB
  96. yolov5_obb-master/models/hub/yolov5-panet.yaml 1.37KB
  97. yolov5_obb-master/models/hub/yolov5l6.yaml 1.78KB
  98. yolov5_obb-master/models/hub/yolov5m6.yaml 1.78KB
  99. yolov5_obb-master/models/hub/yolov5n6.yaml 1.78KB
  100. yolov5_obb-master/models/hub/yolov5s-ghost.yaml 1.45KB
  101. yolov5_obb-master/models/hub/yolov5s-transformer.yaml 1.41KB
  102. yolov5_obb-master/models/hub/yolov5s6.yaml 1.78KB
  103. yolov5_obb-master/models/hub/yolov5x6.yaml 1.78KB
  104. yolov5_obb-master/sh/ddp_train.sh 1.58KB
  105. yolov5_obb-master/tools/TestJson2VocClassTxt.py 2.3KB
  106. yolov5_obb-master/tools/Xml2Txt.py 2.53KB
  107. yolov5_obb-master/utils/activations.py 3.69KB
  108. yolov5_obb-master/utils/augmentations.py 11.98KB
  109. yolov5_obb-master/utils/autoanchor.py 8.68KB
  110. yolov5_obb-master/utils/autobatch.py 2.13KB
  111. yolov5_obb-master/utils/callbacks.py 2.34KB
  112. yolov5_obb-master/utils/datasets.py 48.49KB
  113. yolov5_obb-master/utils/downloads.py 6.13KB
  114. yolov5_obb-master/utils/general.py 39.81KB
  115. yolov5_obb-master/utils/loss.py 13.12KB
  116. yolov5_obb-master/utils/metrics.py 13.75KB
  117. yolov5_obb-master/utils/plots.py 24.2KB
  118. yolov5_obb-master/utils/rboxs_utils.py 6.98KB
  119. yolov5_obb-master/utils/torch_utils.py 13.14KB
  120. yolov5_obb-master/utils/__init__.py 1.11KB
  121. yolov5_obb-master/utils/aws/mime.sh 780B
  122. yolov5_obb-master/utils/aws/resume.py 1.17KB
  123. yolov5_obb-master/utils/aws/userdata.sh 1.22KB
  124. yolov5_obb-master/utils/aws/__init__.py
  125. yolov5_obb-master/utils/flask_rest_api/example_request.py 299B
  126. yolov5_obb-master/utils/flask_rest_api/README.md 1.67KB
  127. yolov5_obb-master/utils/flask_rest_api/restapi.py 1.05KB
  128. yolov5_obb-master/utils/google_app_engine/additional_requirements.txt 105B
  129. yolov5_obb-master/utils/google_app_engine/app.yaml 174B
  130. yolov5_obb-master/utils/google_app_engine/Dockerfile 821B
  131. yolov5_obb-master/utils/loggers/__init__.py 7.7KB
  132. yolov5_obb-master/utils/loggers/wandb/log_dataset.py 1.01KB
  133. yolov5_obb-master/utils/loggers/wandb/README.md 10.57KB
  134. yolov5_obb-master/utils/loggers/wandb/sweep.py 1.12KB
  135. yolov5_obb-master/utils/loggers/wandb/sweep.yaml 2.41KB
  136. yolov5_obb-master/utils/loggers/wandb/wandb_utils.py 26.46KB
  137. yolov5_obb-master/utils/loggers/wandb/__init__.py
  138. yolov5_obb-master/utils/loggers/wandb/__pycache__/wandb_utils.cpython-39.pyc 19.17KB
  139. yolov5_obb-master/utils/loggers/wandb/__pycache__/__init__.cpython-39.pyc 158B
  140. yolov5_obb-master/utils/nms_rotated/nms_rotated_wrapper.py 2.74KB
  141. yolov5_obb-master/utils/nms_rotated/setup.py 1.67KB
  142. yolov5_obb-master/utils/nms_rotated/__init__.py 86B
  143. yolov5_obb-master/utils/nms_rotated/src/box_iou_rotated_utils.h 10.34KB
  144. yolov5_obb-master/utils/nms_rotated/src/nms_rotated_cpu.cpp 2.31KB
  145. yolov5_obb-master/utils/nms_rotated/src/nms_rotated_cuda.cu 4.6KB
  146. yolov5_obb-master/utils/nms_rotated/src/nms_rotated_ext.cpp 1.61KB
  147. yolov5_obb-master/utils/nms_rotated/src/poly_nms_cpu.cpp 140B
  148. yolov5_obb-master/utils/nms_rotated/src/poly_nms_cuda.cu 8.46KB
0评论
提交 加载更多评论
其他资源 PFC5.0,6.0花岗岩单轴GBM,可定义矿物种类,含量,预制孔隙/裂隙单轴压缩实验,孔隙,裂隙可直接CAD导入,可监测应力应变曲线,裂纹数量和种类 代码百分百正常运行,有中文备注,对于后添加的功能
PFC5.0,6.0花岗岩单轴GBM,可定义矿物种类,含量,预制孔隙/裂隙单轴压缩实验,孔隙,裂隙可直接CAD导入,可监测应力应变曲线,裂纹数量和种类 代码百分百正常运行,有中文备注,对于后添加的功能
PFC5.0,6.0花岗岩单轴GBM,可定义矿物种类,含量,预制孔隙/裂隙单轴压缩实验,孔隙,裂隙可直接CAD导入,可监测应力应变曲线,裂纹数量和种类
代码百分百正常运行,有中文备注,对于后添加的功能
基于yolov8-firedetection的火灾探测部署.zip
基于yolov8-firedetection的火灾探测部署.zip
基于yolov8-firedetection的火灾探测部署.zip 基于yolov8-firedetection的火灾探测部署.zip 基于yolov8-firedetection的火灾探测部署.zip
全国各省Kml边界,WGS84格式
自己整理的各省Kml边界,后续发布各省地级市边界
复制leveldb的主要目的是学习LSM-Tree的具体实现,提高C++水平 将附上具体的实施文件,以便更好地阅读项目(以及理解leveldb的实施)-xdb LSM树.zip
复制leveldb的主要目的是学习LSM-Tree的具体实现,提高C++水平。将附上具体的实施文件,以便更好地阅读项目(以及理解leveldb的实施)_xdb LSM树.zip
基于MATLAB的人体目标检测 主要调用MATLAB自带的yolov3对人体检测
基于MATLAB的人体目标检测 主要调用MATLAB自带的yolov3对人体检测
基于MATLAB的人体目标检测
主要调用MATLAB自带的yolov3对人体检测
博世汽车电驱仿真模型,同步电机和异步电机模型,相电流完美波形 博世汽车电驱仿真模型,同步电机和异步电机模型,相电流完美波形,自动计算弱磁模型调用各种脚本进行foc控制,正反转切电流无波动,由于模型特殊
博世汽车电驱仿真模型,同步电机和异步电机模型,相电流完美波形 博世汽车电驱仿真模型,同步电机和异步电机模型,相电流完美波形,自动计算弱磁模型调用各种脚本进行foc控制,正反转切电流无波动,由于模型特殊性购入不 不,谢谢(运行前要加载tc_ipmsm_config.m)
博世汽车电驱仿真模型,同步电机和异步电机模型,相电流完美波形 博世汽车电驱仿真模型,同步电机和异步电机模型,相电流完美波形,自动计算弱磁模型调用各种脚本进行foc控制,正反转切电流无波动,由于模型特殊
单相逆变器仿真模型 电压电流双闭环 双闭环PI控制 LC滤波 SPWM调制 输出交流电压220V 50Hz 图2为模型输出电压电流 功率波形 Matlab Simulink
单相逆变器仿真模型 电压电流双闭环 双闭环PI控制 LC滤波 SPWM调制 输出交流电压220V 50Hz 图2为模型输出电压电流 功率波形 Matlab Simulink
双有源桥式dcdc变器仿真 dab变器Matlab仿真模型 自行设计输入输出电压值 配基础讲解一份
双有源桥式dcdc变器仿真 dab变器Matlab仿真模型 自行设计输入输出电压值 配基础讲解一份
双有源桥式dcdc变器仿真
dab变器Matlab仿真模型
自行设计输入输出电压值
配基础讲解一份