首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

点云实例分割-Softgroup-训练自己数据集程序

人工智能 2.73MB 41 需要积分: 1
立即下载

资源介绍:

根据官方代码修改可以训练自己的数据程序项目
# SoftGroup [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/softgroup-for-3d-instance-segmentation-on/3d-instance-segmentation-on-scannetv2)](https://paperswithcode.com/sota/3d-instance-segmentation-on-scannetv2?p=softgroup-for-3d-instance-segmentation-on) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/softgroup-for-3d-instance-segmentation-on/3d-instance-segmentation-on-s3dis)](https://paperswithcode.com/sota/3d-instance-segmentation-on-s3dis?p=softgroup-for-3d-instance-segmentation-on) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/softgroup-for-3d-instance-segmentation-on/3d-object-detection-on-scannetv2)](https://paperswithcode.com/sota/3d-object-detection-on-scannetv2?p=softgroup-for-3d-instance-segmentation-on) ![Architecture](./docs/architecture.png) We provide code for reproducing results of two papers [**SoftGroup for 3D Instance Segmentation on Point Clouds**](https://arxiv.org/abs/2203.01509)\ Thang Vu, Kookhoi Kim, Tung M. Luu, Thanh Nguyen, and Chang D. Yoo.\ **CVPR 2022 (Oral)**. [**Scalable SoftGroup for 3D Instance Segmentation on Point Clouds**](https://arxiv.org/abs/2209.08263)\ Thang Vu, Kookhoi Kim, Tung M. Luu, Thanh Nguyen, Junyeong Kim, and Chang D. Yoo.\ **TPAMI 2023 (accepted)**. ## Update - 25/Nov/2022: Support [SoftGroup++](https://arxiv.org/abs/2209.08263). - 12/Sep/2022: Support panoptic segmentation on SemanticKITTI dataset. - 28/Jun/2022: Support STPLS3D dataset. Add custom dataset guideline. - 16/Apr/2022: The code base is refactored. Coding is more extendable, readable, and consistent. The following features are supported: - Support up-to-date pytorch 1.11 and spconv 2.1. - Support distributed and mix precision training. Training time on ScanNet v2 (on 4GPUs) reduces from 4 day to 10 hours. - Faster inference speed, which requires only 288 ms per ScanNet scan on single Titan X. ## Introduction Existing state-of-the-art 3D instance segmentation methods perform semantic segmentation followed by grouping. The hard predictions are made when performing semantic segmentation such that each point is associated with a single class. However, the errors stemming from hard decision propagate into grouping that results in (1) low overlaps between the predicted instance with the ground truth and (2) substantial false positives. To address the aforementioned problems, this paper proposes a 3D instance segmentation method referred to as SoftGroup by performing bottom-up soft grouping followed by top-down refinement. SoftGroup allows each point to be associated with multiple classes to mitigate the problems stemming from semantic prediction errors and suppresses false positive instances by learning to categorize them as background. Experimental results on different datasets and multiple evaluation metrics demonstrate the efficacy of SoftGroup. Its performance surpasses the strongest prior method by a significant margin of +6.2% on the ScanNet v2 hidden test set and +6.8% on S3DIS Area 5 of AP_50. ![Learderboard](./docs/leaderboard.png) ## Feature * State of the art performance on the [ScanNet benchmark](http://kaldir.vc.in.tum.de/scannet_benchmark/semantic_instance_3d) and S3DIS dataset (3/Mar/2022). * High speed of 345 ms per scan on ScanNet dataset, which is comparable with the existing fastest methods ([HAIS](https://github.com/hustvl/HAIS)). Our refactored implementation (this code) further reduce the inference time to 288 ms per scan. * Support multiple datasets: ScanNet, S3DIS, STPLS3D, SemanticKITTI. ## Installation Please refer to [installation guide](docs/installation.md). ## Data Preparation Please refer to [data preparation](dataset/README.md). ## Pretrained models ### Instance segmentation | Dataset | Model | AP | AP_50 | AP_25 | Download | |:----------:|:-----------:|:----:|:-----:|:-----:|:-------------------------------------------------------------------------------------------:| | S3DIS | SoftGroup | 51.4 | 66.5 | 75.4 | [model](https://drive.google.com/file/d/1-f7I6-eIma4OilBON928N6mVcYbhiUFP/view?usp=sharing) | | S3DIS | SoftGroup++ | 50.9 | 67.8 | 76.0 | [model](https://drive.google.com/file/d/1OLbC8lmWkAQbqYAjiFj84egLQmJr-PmQ/view?usp=sharing) | | ScanNet v2 | SoftGroup | 45.8 | 67.4 | 79.1 | [model](https://drive.google.com/file/d/1XUNRfred9QAEUY__VdmSgZxGQ7peG5ms/view?usp=sharing) | | ScanNet v2 | SoftGroup++ | 45.9 | 67.9 | 79.4 | above | | STPLS3D | SoftGroup | 47.3 | 63.1 | 71.4 | [model](https://drive.google.com/file/d/1xCkKLTCYtQmSjXYH_sSg21M_6dcAskd8/view?usp=sharing) | | STPLS3D | SoftGroup++ | 46.5 | 62.9 | 71.8 | above | > **_NOTE:_** SoftGroup and SoftGroup++ use can use same trained model for inference on ScanNet v2 and STPLS3D. ### Panoptic segmentation | Dataset | PQ | Config | Model | |:-------------:|:----:|:------:|:-----:| | SemanticKITTI | 60.2 | [config](https://github.com/thangvubk/SoftGroup/blob/main/configs/softgroup_kitti.yaml) | [model](https://drive.google.com/file/d/10Ln-xLfl8Z3DX3G3lnO_RruJtYUYDfI7/view?usp=sharing) | ## Training We use the checkpoint of [HAIS](https://github.com/hustvl/HAIS) as pretrained backbone. **We have already converted the checkpoint to work on ``spconv2.x``**. Download the pretrained HAIS-spconv2 model and put it in ``SoftGroup/`` directory. Converted hais checkpoint: [model](https://drive.google.com/file/d/1FABsCUnxfO_VlItAzDYAwurdfcdK-scs/view?usp=sharing) Noted that for fair comparison with implementation in STPLS3D paper, we train SoftGroup on this dataset from scratch without pretrained backbone. ### Training S3DIS dataset The default configs suppose training on 4 GPU. If you use smaller number of GPUs, you should reduce the learning rate linearly. First, finetune the pretrained HAIS point-wise prediction network (backbone) on S3DIS. ``` ./tools/dist_train.sh configs/softgroup_s3dis_backbone_fold5.yaml 4 ``` Then, train model from frozen backbone. ``` ./tools/dist_train.sh configs/softgroup_s3dis_fold5.yaml 4 ``` ### Training ScanNet V2 dataset Training on ScanNet doesnot require finetuning the backbone. Just freeze pretrained backbone and train the model. ``` ./tools/dist_train.sh configs/softgroup_scannet.yaml 4 ``` ### Training STPLS3D dataset ``` ./tools/dist_train.sh configs/softgroup_stpls3d_backbone.yaml 4 ./tools/dist_train.sh configs/softgroup_stpls3d.yaml 4 ``` ## Inference ``` ./tools/dist_test.sh $CONFIG_FILE $CHECKPOINT $NUM_GPU ``` ### Inference without label For example, on scannet test split, just change [``prefix``](https://github.com/thangvubk/SoftGroup/blob/cf88d9be41ae83a70f9100856a3ca15ee4ddcee9/configs/softgroup_scannet.yaml#L49) to ``test`` and [``with_label``](https://github.com/thangvubk/SoftGroup/blob/cf88d9be41ae83a70f9100856a3ca15ee4ddcee9/configs/softgroup_scannet.yaml#L52) to ``False`` before running inference. ### Bounding box evaluation of ScanNet V2 dataset. We provide script to evaluate detection performance on axis-aligned boxes from predicted/ground-truth instance. - Step 1: Change ``save_instance`` to ``True`` in [config file](https://github.com/thangvubk/SoftGroup/blob/99ffb9756e553e0edfb2c43e2ab6a6f646892bb5/config/softgroup_default_scannet.yaml#L72). - Step 2: Run evaluation code. ``` CUDA_VISIBLE_DEVICES=0 python test.py --config config/softgroup_default_scannet.yaml --pretrain $PATH_TO_PRETRAIN_MODEL$ ``` - Step 3: Evaluate detection performance. ``` python eval_det.py ``` ## Visualization Please refer to [visualization guide](docs/visualization.md) for visualizing ScanNet and S3DIS results. ## Custom dataset Please refer to [custom dataset guide](docs/custom_dataset.md). ## Citation If you find our work helpful for your research. Please consider citing our paper. ``` @inproceedings{vu2022softgroup, title={SoftGroup for 3D Instance Seg

资源文件列表:

SoftGroup.zip 大约有172个文件
  1. SoftGroup/
  2. SoftGroup/.flake8 148B
  3. SoftGroup/.gitignore 1.01KB
  4. SoftGroup/.pre-commit-config.yaml 954B
  5. SoftGroup/configs/
  6. SoftGroup/configs/softgroup/
  7. SoftGroup/configs/softgroup/softgroup_kitti.yaml 1.61KB
  8. SoftGroup/configs/softgroup/softgroup_kitti_backbone.yaml 1.56KB
  9. SoftGroup/configs/softgroup/softgroup_s3dis.yaml 1.54KB
  10. SoftGroup/configs/softgroup/softgroup_s3dis_backbone_fold5.yaml 1.52KB
  11. SoftGroup/configs/softgroup/softgroup_s3dis_fold5.yaml 1.66KB
  12. SoftGroup/configs/softgroup/softgroup_scannet.yaml 1.68KB
  13. SoftGroup/configs/softgroup/softgroup_scannet_backbone.yaml 1.67KB
  14. SoftGroup/configs/softgroup/softgroup_soybean.yaml 1.35KB
  15. SoftGroup/configs/softgroup/softgroup_stpls3d.yaml 1.71KB
  16. SoftGroup/configs/softgroup/softgroup_stpls3d_backbone.yaml 1.58KB
  17. SoftGroup/configs/softgroup++/
  18. SoftGroup/configs/softgroup++/softgroup++_s3dis_backbone_fold1.yaml 1.53KB
  19. SoftGroup/configs/softgroup++/softgroup++_s3dis_backbone_fold2.yaml 1.53KB
  20. SoftGroup/configs/softgroup++/softgroup++_s3dis_backbone_fold3.yaml 1.53KB
  21. SoftGroup/configs/softgroup++/softgroup++_s3dis_backbone_fold4.yaml 1.53KB
  22. SoftGroup/configs/softgroup++/softgroup++_s3dis_backbone_fold5.yaml 1.53KB
  23. SoftGroup/configs/softgroup++/softgroup++_s3dis_backbone_fold6.yaml 1.53KB
  24. SoftGroup/configs/softgroup++/softgroup++_s3dis_fold1.yaml 1.73KB
  25. SoftGroup/configs/softgroup++/softgroup++_s3dis_fold2.yaml 1.73KB
  26. SoftGroup/configs/softgroup++/softgroup++_s3dis_fold3.yaml 1.73KB
  27. SoftGroup/configs/softgroup++/softgroup++_s3dis_fold4.yaml 1.73KB
  28. SoftGroup/configs/softgroup++/softgroup++_s3dis_fold5.yaml 1.73KB
  29. SoftGroup/configs/softgroup++/softgroup++_s3dis_fold6.yaml 1.73KB
  30. SoftGroup/configs/softgroup++/softgroup++_scannet.yaml 1.75KB
  31. SoftGroup/configs/softgroup++/softgroup++_stpls3d.yaml 1.81KB
  32. SoftGroup/configs/softgroup++/softgroup++_stpls3d_backbone.yaml 1.56KB
  33. SoftGroup/dataset/
  34. SoftGroup/dataset/kitti/
  35. SoftGroup/dataset/kitti/semantic-kitti.yaml 5.41KB
  36. SoftGroup/dataset/README.md 2.11KB
  37. SoftGroup/dataset/s3dis/
  38. SoftGroup/dataset/s3dis/downsample.py 2.5KB
  39. SoftGroup/dataset/s3dis/prepare_data.sh 95B
  40. SoftGroup/dataset/s3dis/prepare_data_inst.py 5.57KB
  41. SoftGroup/dataset/s3dis/prepare_data_inst_gttxt.py 2.14KB
  42. SoftGroup/dataset/scannetv2/
  43. SoftGroup/dataset/scannetv2/prepare_data.sh 241B
  44. SoftGroup/dataset/scannetv2/prepare_data_inst.py 3.68KB
  45. SoftGroup/dataset/scannetv2/prepare_data_inst_gttxt.py 1.63KB
  46. SoftGroup/dataset/scannetv2/scannetv2_test.txt 1.27KB
  47. SoftGroup/dataset/scannetv2/scannetv2_train.txt 15.25KB
  48. SoftGroup/dataset/scannetv2/scannetv2_val.txt 3.96KB
  49. SoftGroup/dataset/scannetv2/scannet_util.py 1018B
  50. SoftGroup/dataset/scannetv2/split_data.py 1.3KB
  51. SoftGroup/dataset/stpls3d/
  52. SoftGroup/dataset/stpls3d/prepare_data.sh 78B
  53. SoftGroup/dataset/stpls3d/prepare_data_inst_instance_stpls3d.py 7.4KB
  54. SoftGroup/dataset/stpls3d/prepare_data_statistic_stpls3d.py 2.92KB
  55. SoftGroup/docs/
  56. SoftGroup/docs/architecture.png 82.95KB
  57. SoftGroup/docs/config_explanation.md 4.48KB
  58. SoftGroup/docs/custom_dataset.md 2.32KB
  59. SoftGroup/docs/installation.md 727B
  60. SoftGroup/docs/leaderboard.png 251.19KB
  61. SoftGroup/docs/train_logs/
  62. SoftGroup/docs/train_logs/softgroup_s3dis_fold5_20220602_075350.log 131.47KB
  63. SoftGroup/docs/train_logs/softgroup_scannet_20220602_120228.log 945.36KB
  64. SoftGroup/docs/visualization.md 1.29KB
  65. SoftGroup/LICENSE 1.03KB
  66. SoftGroup/README.md 8.62KB
  67. SoftGroup/requirements.txt 81B
  68. SoftGroup/setup.cfg 405B
  69. SoftGroup/setup.py 896B
  70. SoftGroup/softgroup/
  71. SoftGroup/softgroup/data/
  72. SoftGroup/softgroup/data/custom.py 10.76KB
  73. SoftGroup/softgroup/data/kitti.py 5.06KB
  74. SoftGroup/softgroup/data/s3dis.py 4.51KB
  75. SoftGroup/softgroup/data/scannetv2.py 1.14KB
  76. SoftGroup/softgroup/data/soybean.py 10.79KB
  77. SoftGroup/softgroup/data/stpls3d.py 739B
  78. SoftGroup/softgroup/data/__init__.py 1.77KB
  79. SoftGroup/softgroup/data/__pycache__/
  80. SoftGroup/softgroup/data/__pycache__/custom.cpython-38.pyc 8.63KB
  81. SoftGroup/softgroup/data/__pycache__/kitti.cpython-38.pyc 4.09KB
  82. SoftGroup/softgroup/data/__pycache__/s3dis.cpython-38.pyc 3.59KB
  83. SoftGroup/softgroup/data/__pycache__/scannetv2.cpython-38.pyc 1.48KB
  84. SoftGroup/softgroup/data/__pycache__/soybean.cpython-38.pyc 8.69KB
  85. SoftGroup/softgroup/data/__pycache__/stpls3d.cpython-38.pyc 1.01KB
  86. SoftGroup/softgroup/data/__pycache__/__init__.cpython-38.pyc 1.35KB
  87. SoftGroup/softgroup/evaluation/
  88. SoftGroup/softgroup/evaluation/instance_eval.py 18.53KB
  89. SoftGroup/softgroup/evaluation/instance_eval_util.py 5.21KB
  90. SoftGroup/softgroup/evaluation/panoptic_eval.py 10.19KB
  91. SoftGroup/softgroup/evaluation/point_wise_eval.py 1.58KB
  92. SoftGroup/softgroup/evaluation/__init__.py 269B
  93. SoftGroup/softgroup/evaluation/__pycache__/
  94. SoftGroup/softgroup/evaluation/__pycache__/instance_eval.cpython-38.pyc 9.01KB
  95. SoftGroup/softgroup/evaluation/__pycache__/instance_eval_util.cpython-38.pyc 5.14KB
  96. SoftGroup/softgroup/evaluation/__pycache__/panoptic_eval.cpython-38.pyc 6.22KB
  97. SoftGroup/softgroup/evaluation/__pycache__/point_wise_eval.cpython-38.pyc 1.66KB
  98. SoftGroup/softgroup/evaluation/__pycache__/__init__.cpython-38.pyc 405B
  99. SoftGroup/softgroup/model/
  100. SoftGroup/softgroup/model/blocks.py 5.06KB
  101. SoftGroup/softgroup/model/softgroup.py 33.36KB
  102. SoftGroup/softgroup/model/__init__.py 58B
  103. SoftGroup/softgroup/model/__pycache__/
  104. SoftGroup/softgroup/model/__pycache__/blocks.cpython-38.pyc 4.1KB
  105. SoftGroup/softgroup/model/__pycache__/softgroup.cpython-38.pyc 19.39KB
  106. SoftGroup/softgroup/model/__pycache__/__init__.cpython-38.pyc 199B
  107. SoftGroup/softgroup/ops/
  108. SoftGroup/softgroup/ops/clang_format.sh 120B
  109. SoftGroup/softgroup/ops/functions.py 13.08KB
  110. SoftGroup/softgroup/ops/ops.cpython-38-x86_64-linux-gnu.so 7.6MB
  111. SoftGroup/softgroup/ops/setup.py 429B
  112. SoftGroup/softgroup/ops/src/
  113. SoftGroup/softgroup/ops/src/bfs_cluster/
  114. SoftGroup/softgroup/ops/src/bfs_cluster/bfs_cluster.cpp 4.51KB
  115. SoftGroup/softgroup/ops/src/bfs_cluster/bfs_cluster.cu 2.71KB
  116. SoftGroup/softgroup/ops/src/bfs_cluster/bfs_cluster.h 1.08KB
  117. SoftGroup/softgroup/ops/src/cal_iou_and_masklabel/
  118. SoftGroup/softgroup/ops/src/cal_iou_and_masklabel/cal_iou_and_masklabel.cpp 4.15KB
  119. SoftGroup/softgroup/ops/src/cal_iou_and_masklabel/cal_iou_and_masklabel.cu 6.8KB
  120. SoftGroup/softgroup/ops/src/cal_iou_and_masklabel/cal_iou_and_masklabel.h 2.22KB
  121. SoftGroup/softgroup/ops/src/cuda.cu 781B
  122. SoftGroup/softgroup/ops/src/cuda_utils.h 574B
  123. SoftGroup/softgroup/ops/src/datatype/
  124. SoftGroup/softgroup/ops/src/datatype/datatype.cpp 436B
  125. SoftGroup/softgroup/ops/src/datatype/datatype.h 1.22KB
  126. SoftGroup/softgroup/ops/src/octree_ball_query/
  127. SoftGroup/softgroup/ops/src/octree_ball_query/octree_ball_query.cpp 5.54KB
  128. SoftGroup/softgroup/ops/src/octree_ball_query/octree_ball_query.cu 5.17KB
  129. SoftGroup/softgroup/ops/src/octree_ball_query/octree_ball_query.h 1.93KB
  130. SoftGroup/softgroup/ops/src/roipool/
  131. SoftGroup/softgroup/ops/src/roipool/roipool.cpp 1.03KB
  132. SoftGroup/softgroup/ops/src/roipool/roipool.cu 2.48KB
  133. SoftGroup/softgroup/ops/src/roipool/roipool.h 895B
  134. SoftGroup/softgroup/ops/src/sec_mean/
  135. SoftGroup/softgroup/ops/src/sec_mean/sec_mean.cpp 1.03KB
  136. SoftGroup/softgroup/ops/src/sec_mean/sec_mean.cu 2.88KB
  137. SoftGroup/softgroup/ops/src/sec_mean/sec_mean.h 864B
  138. SoftGroup/softgroup/ops/src/softgroup_api.cpp 1.1KB
  139. SoftGroup/softgroup/ops/src/softgroup_ops.cpp 1.48KB
  140. SoftGroup/softgroup/ops/src/softgroup_ops.h 1.09KB
  141. SoftGroup/softgroup/ops/src/voxelize/
  142. SoftGroup/softgroup/ops/src/voxelize/voxelize.cpp 6.07KB
  143. SoftGroup/softgroup/ops/src/voxelize/voxelize.cu 2.29KB
  144. SoftGroup/softgroup/ops/src/voxelize/voxelize.h 2.05KB
  145. SoftGroup/softgroup/ops/__init__.py 25B
  146. SoftGroup/softgroup/ops/__pycache__/
  147. SoftGroup/softgroup/ops/__pycache__/functions.cpython-38.pyc 10.81KB
  148. SoftGroup/softgroup/ops/__pycache__/__init__.cpython-38.pyc 158B
  149. SoftGroup/softgroup/util/
  150. SoftGroup/softgroup/util/dist.py 3.59KB
  151. SoftGroup/softgroup/util/fp16.py 2.65KB
  152. SoftGroup/softgroup/util/logger.py 1.11KB
  153. SoftGroup/softgroup/util/optim.py 296B
  154. SoftGroup/softgroup/util/rle.py 1.01KB
  155. SoftGroup/softgroup/util/utils.py 5KB
  156. SoftGroup/softgroup/util/__init__.py 299B
  157. SoftGroup/softgroup/util/__pycache__/
  158. SoftGroup/softgroup/util/__pycache__/dist.cpython-38.pyc 3.15KB
  159. SoftGroup/softgroup/util/__pycache__/fp16.cpython-38.pyc 2.14KB
  160. SoftGroup/softgroup/util/__pycache__/logger.cpython-38.pyc 1.38KB
  161. SoftGroup/softgroup/util/__pycache__/optim.cpython-38.pyc 587B
  162. SoftGroup/softgroup/util/__pycache__/rle.cpython-38.pyc 1.45KB
  163. SoftGroup/softgroup/util/__pycache__/utils.cpython-38.pyc 5.11KB
  164. SoftGroup/softgroup/util/__pycache__/__init__.cpython-38.pyc 516B
  165. SoftGroup/tools/
  166. SoftGroup/tools/convert_checkpoint.py 973B
  167. SoftGroup/tools/dist_test.sh 204B
  168. SoftGroup/tools/dist_train.sh 176B
  169. SoftGroup/tools/eval_det.py 10.97KB
  170. SoftGroup/tools/test.py 8.31KB
  171. SoftGroup/tools/train.py 8.81KB
  172. SoftGroup/tools/visualization.py 10.23KB
0评论
提交 加载更多评论
其他资源 C#编写的一款读取xml文件的mapping图软件 可以自由定位位置,统计数量,蛇形走位 主要用在晶圆图谱识别
C#编写的一款读取xml文件的mapping图软件。 可以自由定位位置,统计数量,蛇形走位。 主要用在晶圆图谱识别。

C#编写的一款读取xml文件的mapping图软件 
可以自由定位位置,统计数量,蛇形走位 
主要用在晶圆图谱识别
stm32步进电机加减速代码 stm32f103 stm32步进电机S型加减速程序源码与详细分析,资料为算法实现以及算法的相关
stm32步进电机加减速代码 stm32f103 stm32步进电机S型加减速程序源码与详细分析,资料为算法实现以及算法的相关讲解,例程中有stm32f103步进电机S型加减速的完整工程代码,对步进电机s型加减速控制很有帮助。
stm32步进电机加减速代码 stm32f103
stm32步进电机S型加减速程序源码与详细分析,资料为算法实现以及算法的相关
stm32步进电机S型加减速程序源码与详细分析,
stm32步进电机S型加减速程序源码与详细分析,
stm32步进电机S型加减速程序源码与详细分析,
《基于改进粒子群算法的混合储能系统容量优化》完全复现 matlab 以全生命周期费用最低为目标函数,负荷缺电率作为风光互补发电
《基于改进粒子群算法的混合储能系统容量优化》完全复现 matlab。 以全生命周期费用最低为目标函数,负荷缺电率作为风光互补发电系统的运行指标,得到蓄电池储能和超级电容个数,缺电率和系统最小费用。 粒子群算法:权重改进、对称加速因子、不对称加速因子三种情况的优化结果和迭代曲线。 另包含2020年最新提出的阿基米德优化算法AOA和麻雀搜索算法SSA对该lunwen的实现。 (该算法收敛速度快,不存在pso的早熟收敛)
《基于改进粒子群算法的混合储能系统容量优化》完全复现
matlab 
以全生命周期费用最低为目标函数,负荷缺电率作为风光互补发电
基于物联网技术的智慧农业温棚系统,由STM32F103c8t6,温湿度传感器,烟雾传感器,光照传感器,蜂鸣器模块,电机模块组成
基于物联网技术的智慧农业温棚系统,由STM32F103c8t6,温湿度传感器,烟雾传感器,光照传感器,蜂鸣器模块,电机模块组成。 搭配阿里云平台,4G上阿里云,手机App。 电子资料(代码,教学,材料清单,原理图pcb图以及演示视频),也可定制实物。
基于物联网技术的智慧农业温棚系统,由STM32F103c8t6,温湿度传感器,烟雾传感器,光照传感器,蜂鸣器模块,电机模块组成
基于MicroPython的ESP32控制DHT22温湿度传感器模块设计方案Wokwi软硬件仿真实现
本方案是一个极具创新性与实用性的设计方案,其核心是基于功能强大的MicroPython编程语言,在性能优越的 ESP32微控制器上进行开发,专门用于控制DHT22温湿度传感器模块,从而实现对环境温湿度的精准检测。 在资源方面,首先,MicroPython作为一种简洁高效且易于上手的编程语言,它为整个方案提供了坚实的软件基础。它拥有丰富的库函数和简洁的语法,使得开发者能够高效地编写程序,充分利用ESP32的硬件资源。 ESP32则是这个方案中的硬件核心。它具备强大的处理能力、丰富的外设接口以及良好的低功耗特性。其内部集成了高性能的双核处理器,能够快速地处理从DHT22温湿度传感器模块传输过来的数据。同时,ESP32拥有多个GPIO引脚,这些引脚可以方便地与DHT22温湿度传感器模块进行连接,建立稳定的数据传输通道。 DHT22温湿度传感器模块是专门用于采集环境温湿度信息的关键组件。它采用了先进的传感技术,能够在不同的环境条件下准确地测量温度和湿度。该模块具有响应速度快、测量精度高、稳定性好等优点。在与ESP32连接后,它能够实时地将采集到的温湿度数据
西门子污水处理程序西门子Wincc+S7-300污水处理大项目 带西门子Wincc上位机+S7-300程序 污水处理工艺总览包括
西门子污水处理程序西门子Wincc+S7-300污水处理大项目 带西门子Wincc上位机+S7-300程序 污水处理工艺总览包括: 1.进水 2.粗格栅池 3.细隔栅及曝气沉砂池 4.生物除臭池 5.氧化沟 6.配水排泥井 7.二沉池 8.储泥池及污泥脱水 9.纤维转盘滤池 10.紫外消毒及复氧池 11.出水 项目具有工艺流程图,wincc里的所有画面脚本都带中文注释。 PLC注释详细并带设计说明 是一套完整的项目,学习Wincc非常好的参考大项目案例 Wincc7.0以上版本均可打开
西门子污水处理程序西门子Wincc+S7-300污水处理大项目
带西门子Wincc上位机+S7-300程序
污水处理工艺总览包括
西门子wincc工程项目实例 wincc7.0 水处理项目水,处理工程项目(渗透、反渗透、含锌水、含铬水处理、制造纯水等
西门子wincc工程项目实例 wincc7.0 水处理项目水,处理工程项目(渗透、反渗透、含锌水、含铬水处理、制造纯水等)其中包括配套的S7程序。 此项目工程中,对结构变量,脚本,C语言,以及怎样将报警记录通过一个变量,连接到PLC,并通过输出点报警,非常的详细,此工程很大,如果您能看的懂,那么您用WINCC编写一个中型的项目,应该是不成问题了。
西门子wincc工程项目实例 wincc7.0 水处理项目水,处理工程项目(渗透、反渗透、含锌水、含铬水处理、制造纯水等