首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

deep-sort-pytorch

人工智能 41.17MB 48 需要积分: 1
立即下载

资源介绍:

多目标跟踪算法
# Deep Sort with PyTorch ![](demo/demo.gif) ## Update(1-1-2020) Changes - fix bugs - refactor code - accerate detection by adding nms on gpu ## Latest Update(07-22) Changes - bug fix (Thanks @JieChen91 and @yingsen1 for bug reporting). - using batch for feature extracting for each frame, which lead to a small speed up. - code improvement. Futher improvement direction - Train detector on specific dataset rather than the official one. - Retrain REID model on pedestrain dataset for better performance. - Replace YOLOv3 detector with advanced ones. **Any contributions to this repository is welcome!** ## Introduction This is an implement of MOT tracking algorithm deep sort. Deep sort is basicly the same with sort but added a CNN model to extract features in image of human part bounded by a detector. This CNN model is indeed a RE-ID model and the detector used in [PAPER](https://arxiv.org/abs/1703.07402) is FasterRCNN , and the original source code is [HERE](https://github.com/nwojke/deep_sort). However in original code, the CNN model is implemented with tensorflow, which I'm not familier with. SO I re-implemented the CNN feature extraction model with PyTorch, and changed the CNN model a little bit. Also, I use **YOLOv3** to generate bboxes instead of FasterRCNN. ## Dependencies - python 3 (python2 not sure) - numpy - scipy - opencv-python - sklearn - torch >= 0.4 - torchvision >= 0.1 - pillow - vizer - edict ## Quick Start 0. Check all dependencies installed ```bash pip install -r requirements.txt ``` for user in china, you can specify pypi source to accelerate install like: ```bash pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple ``` 1. Clone this repository ``` git clone git@github.com:ZQPei/deep_sort_pytorch.git ``` 2. Download YOLOv3 parameters ``` cd detector/YOLOv3/weight/ wget https://pjreddie.com/media/files/yolov3.weights wget https://pjreddie.com/media/files/yolov3-tiny.weights cd ../../../ ``` 3. Download deepsort parameters ckpt.t7 ``` cd deep_sort/deep/checkpoint # download ckpt.t7 from https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6 to this folder cd ../../../ ``` 4. Compile nms module ```bash cd detector/YOLOv3/nms sh build.sh cd ../../.. ``` Notice: If compiling failed, the simplist way is to **Upgrade your pytorch >= 1.1 and torchvision >= 0.3" and you can avoid the troublesome compiling problems which are most likely caused by either `gcc version too low` or `libraries missing`. 5. Run demo ``` usage: python yolov3_deepsort.py VIDEO_PATH [--help] [--frame_interval FRAME_INTERVAL] [--config_detection CONFIG_DETECTION] [--config_deepsort CONFIG_DEEPSORT] [--display] [--display_width DISPLAY_WIDTH] [--display_height DISPLAY_HEIGHT] [--save_path SAVE_PATH] [--cpu] # yolov3 + deepsort python yolov3_deepsort.py [VIDEO_PATH] # yolov3_tiny + deepsort python yolov3_deepsort.py [VIDEO_PATH] --config_detection ./configs/yolov3_tiny.yaml # yolov3 + deepsort on webcam python3 yolov3_deepsort.py /dev/video0 --camera 0 # yolov3_tiny + deepsort on webcam python3 yolov3_deepsort.py /dev/video0 --config_detection ./configs/yolov3_tiny.yaml --camera 0 ``` Use `--display` to enable display. Results will be saved to `./output/results.avi` and `./output/results.txt`. All files above can also be accessed from BaiduDisk! linker:[BaiduDisk](https://pan.baidu.com/s/1YJ1iPpdFTlUyLFoonYvozg) passwd:fbuw ## Training the RE-ID model The original model used in paper is in original_model.py, and its parameter here [original_ckpt.t7](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6). To train the model, first you need download [Market1501](http://www.liangzheng.com.cn/Project/project_reid.html) dataset or [Mars](http://www.liangzheng.com.cn/Project/project_mars.html) dataset. Then you can try [train.py](deep_sort/deep/train.py) to train your own parameter and evaluate it using [test.py](deep_sort/deep/test.py) and [evaluate.py](deep_sort/deep/evalute.py). ![train.jpg](deep_sort/deep/train.jpg) ## Demo videos and images [demo.avi](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6) [demo2.avi](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6) ![1.jpg](demo/1.jpg) ![2.jpg](demo/2.jpg) ## References - paper: [Simple Online and Realtime Tracking with a Deep Association Metric](https://arxiv.org/abs/1703.07402) - code: [nwojke/deep_sort](https://github.com/nwojke/deep_sort) - paper: [YOLOv3](https://pjreddie.com/media/files/papers/YOLOv3.pdf) - code: [Joseph Redmon/yolov3](https://pjreddie.com/darknet/yolo/)

资源文件列表:

deep_sort_pytorch.zip 大约有102个文件
  1. deep_sort_pytorch/utils/__init__.py
  2. deep_sort_pytorch/deep_sort/sort - Copy/__init__.py
  3. deep_sort_pytorch/utils/draw.py 1.13KB
  4. deep_sort_pytorch/utils/io.py 4.25KB
  5. deep_sort_pytorch/utils/json_logger.py 11.49KB
  6. deep_sort_pytorch/configs/deep_sort.yaml 208B
  7. deep_sort_pytorch/deep_sort/__init__.py 500B
  8. deep_sort_pytorch/utils/log.py 480B
  9. deep_sort_pytorch/utils/parser.py 1.05KB
  10. deep_sort_pytorch/README.md 4.83KB
  11. deep_sort_pytorch/utils/__pycache__/parser.cpython-310.pyc 1.64KB
  12. deep_sort_pytorch/utils/__pycache__/__init__.cpython-310.pyc 252B
  13. deep_sort_pytorch/deep_sort/README.md 65B
  14. deep_sort_pytorch/utils/__pycache__/__init__.cpython-38.pyc 160B
  15. deep_sort_pytorch/deep_sort/deep/checkpoint/.gitkeep
  16. deep_sort_pytorch/LICENSE 1.04KB
  17. deep_sort_pytorch/deep_sort/deep/__init__.py
  18. deep_sort_pytorch/deep_sort/__pycache__/deep_sort.cpython-310.pyc 4.11KB
  19. deep_sort_pytorch/deep_sort/sort/tracker.py 5.31KB
  20. deep_sort_pytorch/deep_sort/deep/test.py 2.48KB
  21. deep_sort_pytorch/utils/evaluation.py 3.45KB
  22. deep_sort_pytorch/deep_sort/sort/__init__.py
  23. deep_sort_pytorch/deep_sort/__pycache__/__init__.cpython-310.pyc 712B
  24. deep_sort_pytorch/utils/asserts.py 316B
  25. deep_sort_pytorch/utils/__pycache__/parser.cpython-37.pyc 1.52KB
  26. deep_sort_pytorch/deep_sort/sort/detection.py 1.43KB
  27. deep_sort_pytorch/.gitignore 89B
  28. deep_sort_pytorch/deep_sort/deep/train.jpg 58.93KB
  29. deep_sort_pytorch/utils/__pycache__/parser.cpython-38.pyc 1.51KB
  30. deep_sort_pytorch/deep_sort/deep/__pycache__/model.cpython-310.pyc 2.86KB
  31. deep_sort_pytorch/deep_sort/__pycache__/deep_sort.cpython-38.pyc 4.06KB
  32. deep_sort_pytorch/deep_sort/sort - Copy/nn_matching.py 5.51KB
  33. deep_sort_pytorch/deep_sort/deep_sort.py 3.77KB
  34. deep_sort_pytorch/utils/tools.py 734B
  35. deep_sort_pytorch/deep_sort/deep/train.py 6.17KB
  36. deep_sort_pytorch/deep_sort/deep/__pycache__/__init__.cpython-310.pyc 261B
  37. deep_sort_pytorch/deep_sort/__pycache__/__init__.cpython-37.pyc 639B
  38. deep_sort_pytorch/deep_sort/deep/feature_extractor.py 1.73KB
  39. deep_sort_pytorch/deep_sort/sort - Copy/linear_assignment.py 7.9KB
  40. deep_sort_pytorch/deep_sort/sort - Copy/iou_matching.py 2.86KB
  41. deep_sort_pytorch/deep_sort/sort/track.py 4.94KB
  42. deep_sort_pytorch/deep_sort/__pycache__/deep_sort.cpython-37.pyc 4KB
  43. deep_sort_pytorch/deep_sort/deep/evaluate.py 307B
  44. deep_sort_pytorch/deep_sort/sort/nn_matching.py 5.51KB
  45. deep_sort_pytorch/deep_sort/deep/__pycache__/__init__.cpython-37.pyc 194B
  46. deep_sort_pytorch/deep_sort/__pycache__/__init__.cpython-38.pyc 630B
  47. deep_sort_pytorch/deep_sort/sort - Copy/__pycache__/__init__.cpython-38.pyc 169B
  48. deep_sort_pytorch/deep_sort/sort - Copy/__pycache__/kalman_filter.cpython-38.pyc 6.61KB
  49. deep_sort_pytorch/deep_sort/deep/__pycache__/feature_extractor.cpython-310.pyc 2.5KB
  50. deep_sort_pytorch/deep_sort/deep/__pycache__/feature_extractor.cpython-37.pyc 2.37KB
  51. deep_sort_pytorch/utils/__pycache__/__init__.cpython-37.pyc 173B
  52. deep_sort_pytorch/deep_sort/sort - Copy/__pycache__/linear_assignment.cpython-37.pyc 6.81KB
  53. deep_sort_pytorch/deep_sort/sort - Copy/__pycache__/detection.cpython-38.pyc 1.83KB
  54. deep_sort_pytorch/deep_sort/deep/__pycache__/__init__.cpython-38.pyc 169B
  55. deep_sort_pytorch/deep_sort/sort - Copy/__pycache__/iou_matching.cpython-37.pyc 2.83KB
  56. deep_sort_pytorch/deep_sort/deep/original_model.py 3.26KB
  57. deep_sort_pytorch/deep_sort/deep/__pycache__/feature_extractor.cpython-38.pyc 2.38KB
  58. deep_sort_pytorch/deep_sort/deep/model.py 3.34KB
  59. deep_sort_pytorch/deep_sort/deep/__pycache__/model.cpython-38.pyc 2.77KB
  60. deep_sort_pytorch/deep_sort/sort/linear_assignment.py 7.9KB
  61. deep_sort_pytorch/deep_sort/sort - Copy/__pycache__/iou_matching.cpython-38.pyc 2.82KB
  62. deep_sort_pytorch/deep_sort/sort - Copy/__pycache__/nn_matching.cpython-38.pyc 5.92KB
  63. deep_sort_pytorch/deep_sort/sort - Copy/__pycache__/track.cpython-38.pyc 5.48KB
  64. deep_sort_pytorch/deep_sort/sort - Copy/__pycache__/detection.cpython-37.pyc 1.86KB
  65. deep_sort_pytorch/deep_sort/sort/iou_matching.py 2.86KB
  66. deep_sort_pytorch/deep_sort/sort - Copy/__pycache__/nn_matching.cpython-37.pyc 5.93KB
  67. deep_sort_pytorch/deep_sort/deep/__pycache__/model.cpython-37.pyc 2.77KB
  68. deep_sort_pytorch/deep_sort/sort/__pycache__/iou_matching.cpython-38.pyc 2.82KB
  69. deep_sort_pytorch/deep_sort/sort - Copy/__pycache__/__init__.cpython-37.pyc 194B
  70. deep_sort_pytorch/deep_sort/sort/__pycache__/__init__.cpython-38.pyc 169B
  71. deep_sort_pytorch/deep_sort/sort - Copy/__pycache__/kalman_filter.cpython-37.pyc 6.57KB
  72. deep_sort_pytorch/deep_sort/sort - Copy/__pycache__/track.cpython-37.pyc 5.47KB
  73. deep_sort_pytorch/deep_sort/sort/__pycache__/track.cpython-310.pyc 5.58KB
  74. deep_sort_pytorch/deep_sort/sort - Copy/__pycache__/tracker.cpython-37.pyc 5.47KB
  75. deep_sort_pytorch/deep_sort/sort/__pycache__/nn_matching.cpython-38.pyc 5.92KB
  76. deep_sort_pytorch/deep_sort/sort/__pycache__/iou_matching.cpython-310.pyc 2.91KB
  77. deep_sort_pytorch/deep_sort/sort/__pycache__/linear_assignment.cpython-310.pyc 6.91KB
  78. deep_sort_pytorch/deep_sort/sort/__pycache__/linear_assignment.cpython-37.pyc 6.81KB
  79. deep_sort_pytorch/deep_sort/sort/__pycache__/kalman_filter.cpython-38.pyc 6.61KB
  80. deep_sort_pytorch/deep_sort/sort/__pycache__/detection.cpython-310.pyc 1.94KB
  81. deep_sort_pytorch/deep_sort/sort/__pycache__/__init__.cpython-310.pyc 261B
  82. deep_sort_pytorch/deep_sort/sort/__pycache__/tracker.cpython-37.pyc 5.47KB
  83. deep_sort_pytorch/deep_sort/sort/__pycache__/__init__.cpython-37.pyc 194B
  84. deep_sort_pytorch/deep_sort/sort/__pycache__/iou_matching.cpython-37.pyc 2.83KB
  85. deep_sort_pytorch/deep_sort/sort/__pycache__/track.cpython-37.pyc 5.47KB
  86. deep_sort_pytorch/deep_sort/sort/__pycache__/nn_matching.cpython-310.pyc 6.01KB
  87. deep_sort_pytorch/deep_sort/sort/__pycache__/nn_matching.cpython-37.pyc 5.93KB
  88. deep_sort_pytorch/deep_sort/sort - Copy/__pycache__/linear_assignment.cpython-38.pyc 6.83KB
  89. deep_sort_pytorch/deep_sort/sort/__pycache__/kalman_filter.cpython-37.pyc 6.57KB
  90. deep_sort_pytorch/deep_sort/sort/__pycache__/linear_assignment.cpython-38.pyc 6.83KB
  91. deep_sort_pytorch/deep_sort/sort - Copy/kalman_filter.py 7.83KB
  92. deep_sort_pytorch/deep_sort/sort - Copy/__pycache__/tracker.cpython-38.pyc 5.52KB
  93. deep_sort_pytorch/deep_sort/sort/__pycache__/detection.cpython-38.pyc 1.86KB
  94. deep_sort_pytorch/deep_sort/sort/__pycache__/tracker.cpython-38.pyc 5.55KB
  95. deep_sort_pytorch/deep_sort/sort/__pycache__/track.cpython-38.pyc 5.51KB
  96. deep_sort_pytorch/deep_sort/sort/__pycache__/tracker.cpython-310.pyc 5.55KB
  97. deep_sort_pytorch/deep_sort/sort/__pycache__/detection.cpython-37.pyc 1.86KB
  98. deep_sort_pytorch/deep_sort/sort/__pycache__/kalman_filter.cpython-310.pyc 6.69KB
  99. deep_sort_pytorch/deep_sort/sort - Copy/preprocessing.py 1.94KB
  100. deep_sort_pytorch/deep_sort/sort/kalman_filter.py 7.83KB
  101. deep_sort_pytorch/deep_sort/sort/preprocessing.py 1.94KB
  102. deep_sort_pytorch/deep_sort/deep/checkpoint/ckpt.t7 43.9MB
0评论
提交 加载更多评论
其他资源 MVsB1_BT_Audio_SDK_v0.3.2.zip
MVsB1_BT_Audio_SDK_v0.3.2.zip
BP神经网络模型Python代码分享给需要的同学
BP神经网络模型Python代码分享给需要的同学
go 语言编写的简易框架
简易的Go语言开发框架可以帮助你快速启动一个项目,并且提供基础的功能结构。以下是一个基础的Go语言开发框架的结构,包含一些常见的组件如路由、配置、日志和数据库连接首先,定义你的项目的目录结构:my-go-project/ │ ├── cmd/ │ └── main.go # 主程序入口 ├── config/ │ └── config.go # 配置文件加载 ├── internal/ │ ├── api/ │ │ └── handler.go # API 路由和处理 │ ├── models/ │ │ └── user.go # 数据模型 │ ├── service/ │ │ └── user_service.go # 业务逻辑层 │ └── repository/ │ └── user_repo.go # 数据库操作层 ├── dao/ │ ├── database/ │ │ └── database.go # 数据库连接 │ ├──
外呼神器V1.0 免费下载
外呼神器V1.0 免费下载
基于STM32H7VBT6的六足机器人控制代码
六足机器人的实时控制代码是实现机器人精确运动和环境适应性的关键。这些代码通常涉及到运动学、动力学、轨迹规划、PID控制等多个方面。在实时控制中,代码需要能够快速响应环境变化,并实时调整机器人的运动参数以保持稳定性和效率。为了提高实时性和适应性,控制代码可能会采用自适应控制策略,如基于多模态切换的自适应控制,这种策略能够根据环境变化自动调整机器人的运动模式。此外,代码可能还会集成模糊逻辑或神经网络等智能控制方法,以提高对复杂环境的适应能力。 实时控制代码的编写和优化是一个不断迭代的过程,需要根据实验结果和实际应用场景进行调整。通过不断的测试和验证,控制代码能够更好地满足六足机器人在各种环境下的运动控制需求。
libxl 4.0.3读取Excel
读取表格速度很快
Pro Git免费开源书籍
"Pro Git" 是一本全面介绍Git版本控制系统使用的免费书籍,由Scott Chacon和Ben Straub编写,并由Apress出版社出版。这本书适合Git的新手以及有经验的用户,它不仅覆盖了Git的基础知识,还深入探讨了Git的高级特性,是学习Git的一个非常好的资源。 主要章节概览: 1. 入门:提供Git的基本介绍,包括安装Git以及如何创建和克隆仓库 2. Git基础:讲解如何使用Git进行日常的工作流程,包括提交更改、查看历史记录、撤销更改等 3. 分支管理:讲解如何使用Git进行日常的工作流程,包括提交更改、查看历史记录、撤销更改等 4. 服务端Git:涉及设置和管理Git服务器的内容; 5. Git工具:探讨一些有用的Git工具,比如图形界面客户端和补丁管理工具 ..... 这本书的优点之一就是它的实用性。每个概念都通过实际例子来说明,并且提供了一系列的提示和技巧,帮助读者更好地理解Git的工作方式。此外,书中也包含了对常见问题的解答,以及如何解决常见的错误。
Pro Git免费开源书籍 Pro Git免费开源书籍 Pro Git免费开源书籍
OpenStack自动化部署shell脚本,非Ansible
OpenStack自动化部署shell脚本,非Ansible 使用shell脚本编写