无标题代码代码代码代码代码
立即下载
资源介绍:
无标题代码代码代码代码代码
# Multi-Task Recommendations with Reinforcement Learning
Source code of [Multi-Task Recommendations with Reinforcement Learning](https://dl.acm.org/doi/10.1145/3543507.3583467)
Code for RetailRocket Dataset.
**Google Drive link for processed RetailRocket data:** https://drive.google.com/file/d/1THRWKttdpmcNaEc1DtKwxgYlV8RLMtV5/view?usp=sharing
# Model Code
+ layers: stores common network structures
+ critic: critic network
+ esmm: esmm(actor) network, can introduce other MTL models as actor inside slmodels
+ layers: classical Embedding layers and MLP layers
+ slmodels: SL baseline models
+ agents: RL models
+ train: training-related configuration
+ env.py: offline sampling simulation environment
+ RLmain.py: main RL training program
+ SLmain.py: SL training main program
+ dataset
+ rtrl:retrailrocket dataset(Convert to MDP format:)[timestamp,sessionid,itemid,pay,click], [itemid,feature1,feature2,..],6:2:2
# How to run it
## MTL baselines
python3 SLmain.py --model_name=esmm
## RMTL
python3 RLmain.py
python3 SLmain.py --model_name=esmm --polish=1
## Result:
test: best auc: 0.732444172986328
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 134/134 [00:07<00:00, 19.14it/s]
task 0, AUC 0.7273702846096346, Log-loss 0.20675417715656488
task 1, AUC 0.7247954179346048, Log-loss 0.048957254763240504
# Citation:
Please cite with the below bibTex if you find it helpful to your research.
```
@inproceedings{liu2023multi,
title={Multi-Task Recommendations with Reinforcement Learning},
author={Liu, Ziru and Tian, Jiejie and Cai, Qingpeng and Zhao, Xiangyu and Gao, Jingtong and Liu, Shuchang and Chen, Dayou and He, Tonghao and Zheng, Dong and Jiang, Peng and others},
booktitle={Proceedings of the ACM Web Conference 2023},
pages={1273--1282},
year={2023}
}
```