Python入门网络爬虫之精华版
立即下载
资源介绍:
Python学习网络爬虫主要分3个大的版块:抓取,分析,存储
简单来说这段过程发生了以下四个步骤:
查找域名对应的IP地址。
向IP对应的服务器发送请求。
服务器响应请求,发回网页内容。
浏览器解析网页内容。
网络爬虫要做的,简单来说,就是实现浏览器的功能。通过指定url,直接返回给用户所需要的数据,而不需要一步步人工去操纵浏览器获取。
# [Python入门网络爬虫之精华版](https://github.com/lining0806/PythonSpiderNotes)
***
Python学习网络爬虫主要分3个大的版块:**抓取**,**分析**,**存储**
另外,比较常用的爬虫框架[Scrapy](http://scrapy.org/),这里最后也详细介绍一下。
首先列举一下本人总结的相关文章,这些覆盖了入门网络爬虫需要的基本概念和技巧:[宁哥的小站-网络爬虫](http://www.lining0806.com/category/spider/)
***
当我们在浏览器中输入一个url后回车,后台会发生什么?比如说你输入[http://www.lining0806.com/](http://www.lining0806.com/),你就会看到宁哥的小站首页。
简单来说这段过程发生了以下四个步骤:
* 查找域名对应的IP地址。
* 向IP对应的服务器发送请求。
* 服务器响应请求,发回网页内容。
* 浏览器解析网页内容。
网络爬虫要做的,简单来说,就是实现浏览器的功能。通过指定url,直接返回给用户所需要的数据,而不需要一步步人工去操纵浏览器获取。
## 抓取
这一步,你要明确要得到的内容是什么?是HTML源码,还是Json格式的字符串等。
#### 1. 最基本的抓取
抓取大多数情况属于get请求,即直接从对方服务器上获取数据。
首先,Python中自带urllib及urllib2这两个模块,基本上能满足一般的页面抓取。另外,[requests](https://github.com/kennethreitz/requests)也是非常有用的包,与此类似的,还有[httplib2](https://github.com/jcgregorio/httplib2)等等。
```
Requests:
import requests
response = requests.get(url)
content = requests.get(url).content
print "response headers:", response.headers
print "content:", content
Urllib2:
import urllib2
response = urllib2.urlopen(url)
content = urllib2.urlopen(url).read()
print "response headers:", response.headers
print "content:", content
Httplib2:
import httplib2
http = httplib2.Http()
response_headers, content = http.request(url, 'GET')
print "response headers:", response_headers
print "content:", content
```
此外,对于带有查询字段的url,get请求一般会将来请求的数据附在url之后,以?分割url和传输数据,多个参数用&连接。
```
data = {'data1':'XXXXX', 'data2':'XXXXX'}
Requests:data为dict,json
import requests
response = requests.get(url=url, params=data)
Urllib2:data为string
import urllib, urllib2
data = urllib.urlencode(data)
full_url = url+'?'+data
response = urllib2.urlopen(full_url)
```
相关参考:[网易新闻排行榜抓取回顾](http://www.lining0806.com/%E7%BD%91%E6%98%93%E6%96%B0%E9%97%BB%E6%8E%92%E8%A1%8C%E6%A6%9C%E6%8A%93%E5%8F%96%E5%9B%9E%E9%A1%BE/)
参考项目:[网络爬虫之最基本的爬虫:爬取网易新闻排行榜](https://github.com/lining0806/PythonSpiderNotes/blob/master/NewsSpider)
### 2. 对于登陆情况的处理
**2.1 使用表单登陆**
这种情况属于post请求,即先向服务器发送表单数据,服务器再将返回的cookie存入本地。
```
data = {'data1':'XXXXX', 'data2':'XXXXX'}
Requests:data为dict,json
import requests
response = requests.post(url=url, data=data)
Urllib2:data为string
import urllib, urllib2
data = urllib.urlencode(data)
req = urllib2.Request(url=url, data=data)
response = urllib2.urlopen(req)
```
**2.2 使用cookie登陆**
使用cookie登陆,服务器会认为你是一个已登陆的用户,所以就会返回给你一个已登陆的内容。因此,需要验证码的情况可以使用带验证码登陆的cookie解决。
```
import requests
requests_session = requests.session()
response = requests_session.post(url=url_login, data=data)
```
若存在验证码,此时采用response = requests_session.post(url=url_login, data=data)是不行的,做法应该如下:
```
response_captcha = requests_session.get(url=url_login, cookies=cookies)
response1 = requests.get(url_login) # 未登陆
response2 = requests_session.get(url_login) # 已登陆,因为之前拿到了Response Cookie!
response3 = requests_session.get(url_results) # 已登陆,因为之前拿到了Response Cookie!
```
相关参考:[网络爬虫-验证码登陆](http://www.lining0806.com/6-%E7%BD%91%E7%BB%9C%E7%88%AC%E8%99%AB-%E9%AA%8C%E8%AF%81%E7%A0%81%E7%99%BB%E9%99%86/)
参考项目:[网络爬虫之用户名密码及验证码登陆:爬取知乎网站](https://github.com/lining0806/PythonSpiderNotes/blob/master/ZhihuSpider)
### 3. 对于反爬虫机制的处理
**3.1 使用代理**
适用情况:限制IP地址情况,也可解决由于“频繁点击”而需要输入验证码登陆的情况。
这种情况最好的办法就是维护一个代理IP池,网上有很多免费的代理IP,良莠不齐,可以通过筛选找到能用的。对于“频繁点击”的情况,我们还可以通过限制爬虫访问网站的频率来避免被网站禁掉。
```
proxies = {'http':'http://XX.XX.XX.XX:XXXX'}
Requests:
import requests
response = requests.get(url=url, proxies=proxies)
Urllib2:
import urllib2
proxy_support = urllib2.ProxyHandler(proxies)
opener = urllib2.build_opener(proxy_support, urllib2.HTTPHandler)
urllib2.install_opener(opener) # 安装opener,此后调用urlopen()时都会使用安装过的opener对象
response = urllib2.urlopen(url)
```
**3.2 时间设置**
适用情况:限制频率情况。
Requests,Urllib2都可以使用time库的sleep()函数:
```
import time
time.sleep(1)
```
**3.3 伪装成浏览器,或者反“反盗链”**
有些网站会检查你是不是真的浏览器访问,还是机器自动访问的。这种情况,加上User-Agent,表明你是浏览器访问即可。有时还会检查是否带Referer信息还会检查你的Referer是否合法,一般再加上Referer。
```
headers = {'User-Agent':'XXXXX'} # 伪装成浏览器访问,适用于拒绝爬虫的网站
headers = {'Referer':'XXXXX'}
headers = {'User-Agent':'XXXXX', 'Referer':'XXXXX'}
Requests:
response = requests.get(url=url, headers=headers)
Urllib2:
import urllib, urllib2
req = urllib2.Request(url=url, headers=headers)
response = urllib2.urlopen(req)
```
### 4. 对于断线重连
不多说。
```
def multi_session(session, *arg):
retryTimes = 20
while retryTimes>0:
try:
return session.post(*arg)
except:
print '.',
retryTimes -= 1
```
或者
```
def multi_open(opener, *arg):
retryTimes = 20
while retryTimes>0:
try:
return opener.open(*arg)
except:
print '.',
retryTimes -= 1
```
这样我们就可以使用multi_session或multi_open对爬虫抓取的session或opener进行保持。
### 5. 多进程抓取
这里针对[华尔街见闻](http://live.wallstreetcn.com/ )进行并行抓取的实验对比:[Python多进程抓取](https://github.com/lining0806/PythonSpiderNotes/blob/master/Spider_Python) 与 [Java单线程和多线程抓取](https://github.com/lining0806/PythonSpiderNotes/blob/master/Spider_Java)
相关参考:[关于Python和Java的多进程多线程计算方法对比](http://www.lining0806.com/%E5%85%B3%E4%BA%8Epython%E5%92%8Cjava%E7%9A%84%E5%A4%9A%E8%BF%9B%E7%A8%8B%E5%A4%9A%E7%BA%BF%E7%A8%8B%E8%AE%A1%E7%AE%97%E6%96%B9%E6%B3%95%E5%AF%B9%E6%AF%94/)
### 6. 对于Ajax请求的处理
对于“加载更多”情况,使用Ajax来传输很多数据。
它的工作原理是:从网页的url加载网页的源代码之后,会在浏览器里执行JavaScript程序。这些程序会加载更多的内容,“填充”到网页里。这就是为什么如果你直接去爬网页本身的url,你会找不到页面的实际内容。
这里,若使用Google Chrome分析”请求“对应的链接(方法:右键→审查元素→Network→清空,点击”加载更多“,出现对应的GET链接寻找Type为text/html的,点击,查看get参数或者复制Request URL),循环过程。
* �