首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

yolov5-7.0源码,附yolov5s分割模型权重

人工智能 14.6MB 21 需要积分: 1
立即下载

资源介绍:

yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。 yolov5-7.0源码,附yolov5s分割模型权重。

English | [简体中文](.github/README_cn.md)
YOLOv5 CI YOLOv5 Citation Docker Pulls
Run on Gradient Open In Colab Open In Kaggle

YOLOv5 🚀 is the world's most loved vision AI, representing Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.

To request a commercial license please complete the form at Ultralytics Licensing.

##
Segmentation ⭐ NEW
Our new YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) instance segmentation models are the fastest and most accurate in the world, beating all current [SOTA benchmarks](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco). We've made them super simple to train, validate and deploy. See full details in our [Release Notes](https://github.com/ultralytics/yolov5/releases/v7.0) and visit our [YOLOv5 Segmentation Colab Notebook](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) for quickstart tutorials.
Segmentation Checkpoints
We trained YOLOv5 segmentations models on COCO for 300 epochs at image size 640 using A100 GPUs. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google [Colab Pro](https://colab.research.google.com/signup) notebooks for easy reproducibility. | Model | size
(pixels) | mAPbox
50-95 | mAPmask
50-95 | Train time
300 epochs
A100 (hours) | Speed
ONNX CPU
(ms) | Speed
TRT A100
(ms) | params
(M) | FLOPs
@640 (B) | |----------------------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|-----------------------------------------------|--------------------------------|--------------------------------|--------------------|------------------------| | [YOLOv5n-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5n-seg.pt) | 640 | 27.6 | 23.4 | 80:17 | **62.7** | **1.2** | **2.0** | **7.1** | | [YOLOv5s-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-seg.pt) | 640 | 37.6 | 31.7 | 88:16 | 173.3 | 1.4 | 7.6 | 26.4 | | [YOLOv5m-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5m-seg.pt) | 640 | 45.0 | 37.1 | 108:36 | 427.0 | 2.2 | 22.0 | 70.8 | | [YOLOv5l-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5l-seg.pt) | 640 | 49.0 | 39.9 | 66:43 (2x) | 857.4 | 2.9 | 47.9 | 147.7 | | [YOLOv5x-seg](https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5x-seg.pt) | 640 | **50.7** | **41.4** | 62:56 (3x) | 1579.2 | 4.5 | 88.8 | 265.7 | - All checkpoints are trained to 300 epochs with SGD optimizer with `lr0=0.01` and `weight_decay=5e-5` at image size 640 and all default settings.
Runs logged to https://wandb.ai/glenn-jocher/YOLOv5_v70_official - **Accuracy** values are for single-model single-scale on COCO dataset.
Reproduce by `python segment/val.py --data coco.yaml --weights yolov5s-seg.pt` - **Speed** averaged over 100 inference images using a [Colab Pro](https://colab.research.google.com/signup) A100 High-RAM instance. Values ind

资源文件列表:

yolov5-7.0.zip 大约有168个文件
  1. yolov5-7.0/
  2. yolov5-7.0/.dockerignore 3.61KB
  3. yolov5-7.0/.gitattributes 75B
  4. yolov5-7.0/.github/
  5. yolov5-7.0/.github/CODE_OF_CONDUCT.md 5.11KB
  6. yolov5-7.0/.github/ISSUE_TEMPLATE/
  7. yolov5-7.0/.github/ISSUE_TEMPLATE/bug-report.yml 2.87KB
  8. yolov5-7.0/.github/ISSUE_TEMPLATE/config.yml 280B
  9. yolov5-7.0/.github/ISSUE_TEMPLATE/feature-request.yml 1.76KB
  10. yolov5-7.0/.github/ISSUE_TEMPLATE/question.yml 1.12KB
  11. yolov5-7.0/.github/PULL_REQUEST_TEMPLATE.md 693B
  12. yolov5-7.0/.github/README_cn.md 27.72KB
  13. yolov5-7.0/.github/SECURITY.md 359B
  14. yolov5-7.0/.github/dependabot.yml 441B
  15. yolov5-7.0/.github/workflows/
  16. yolov5-7.0/.github/workflows/ci-testing.yml 7.25KB
  17. yolov5-7.0/.github/workflows/codeql-analysis.yml 2KB
  18. yolov5-7.0/.github/workflows/docker.yml 1.54KB
  19. yolov5-7.0/.github/workflows/greetings.yml 4.75KB
  20. yolov5-7.0/.github/workflows/stale.yml 1.97KB
  21. yolov5-7.0/.gitignore 3.89KB
  22. yolov5-7.0/.pre-commit-config.yaml 1.52KB
  23. yolov5-7.0/CONTRIBUTING.md 4.88KB
  24. yolov5-7.0/LICENSE 34.3KB
  25. yolov5-7.0/README.md 36.46KB
  26. yolov5-7.0/benchmarks.py 7.65KB
  27. yolov5-7.0/classify/
  28. yolov5-7.0/classify/predict.py 11.22KB
  29. yolov5-7.0/classify/train.py 15.95KB
  30. yolov5-7.0/classify/tutorial.ipynb 100.49KB
  31. yolov5-7.0/classify/val.py 7.86KB
  32. yolov5-7.0/data/
  33. yolov5-7.0/data/Argoverse.yaml 2.67KB
  34. yolov5-7.0/data/GlobalWheat2020.yaml 1.84KB
  35. yolov5-7.0/data/ImageNet.yaml 18.43KB
  36. yolov5-7.0/data/Objects365.yaml 8.99KB
  37. yolov5-7.0/data/SKU-110K.yaml 2.29KB
  38. yolov5-7.0/data/VOC.yaml 3.41KB
  39. yolov5-7.0/data/VisDrone.yaml 2.9KB
  40. yolov5-7.0/data/coco.yaml 2.44KB
  41. yolov5-7.0/data/coco128-seg.yaml 1.82KB
  42. yolov5-7.0/data/coco128.yaml 1.81KB
  43. yolov5-7.0/data/hyps/
  44. yolov5-7.0/data/hyps/hyp.Objects365.yaml 673B
  45. yolov5-7.0/data/hyps/hyp.VOC.yaml 1.13KB
  46. yolov5-7.0/data/hyps/hyp.scratch-high.yaml 1.64KB
  47. yolov5-7.0/data/hyps/hyp.scratch-low.yaml 1.65KB
  48. yolov5-7.0/data/hyps/hyp.scratch-med.yaml 1.65KB
  49. yolov5-7.0/data/images/
  50. yolov5-7.0/data/images/bus.jpg 476.01KB
  51. yolov5-7.0/data/images/zidane.jpg 164.99KB
  52. yolov5-7.0/data/scripts/
  53. yolov5-7.0/data/scripts/download_weights.sh 640B
  54. yolov5-7.0/data/scripts/get_coco.sh 1.53KB
  55. yolov5-7.0/data/scripts/get_coco128.sh 618B
  56. yolov5-7.0/data/scripts/get_imagenet.sh 1.63KB
  57. yolov5-7.0/data/xView.yaml 5.05KB
  58. yolov5-7.0/detect.py 13.75KB
  59. yolov5-7.0/export.py 30.81KB
  60. yolov5-7.0/hubconf.py 7.53KB
  61. yolov5-7.0/models/
  62. yolov5-7.0/models/__init__.py
  63. yolov5-7.0/models/common.py 40.49KB
  64. yolov5-7.0/models/experimental.py 4.22KB
  65. yolov5-7.0/models/hub/
  66. yolov5-7.0/models/hub/anchors.yaml 3.26KB
  67. yolov5-7.0/models/hub/yolov3-spp.yaml 1.53KB
  68. yolov5-7.0/models/hub/yolov3-tiny.yaml 1.2KB
  69. yolov5-7.0/models/hub/yolov3.yaml 1.52KB
  70. yolov5-7.0/models/hub/yolov5-bifpn.yaml 1.39KB
  71. yolov5-7.0/models/hub/yolov5-fpn.yaml 1.19KB
  72. yolov5-7.0/models/hub/yolov5-p2.yaml 1.65KB
  73. yolov5-7.0/models/hub/yolov5-p34.yaml 1.32KB
  74. yolov5-7.0/models/hub/yolov5-p6.yaml 1.7KB
  75. yolov5-7.0/models/hub/yolov5-p7.yaml 2.07KB
  76. yolov5-7.0/models/hub/yolov5-panet.yaml 1.37KB
  77. yolov5-7.0/models/hub/yolov5l6.yaml 1.78KB
  78. yolov5-7.0/models/hub/yolov5m6.yaml 1.78KB
  79. yolov5-7.0/models/hub/yolov5n6.yaml 1.78KB
  80. yolov5-7.0/models/hub/yolov5s-LeakyReLU.yaml 1.46KB
  81. yolov5-7.0/models/hub/yolov5s-ghost.yaml 1.45KB
  82. yolov5-7.0/models/hub/yolov5s-transformer.yaml 1.41KB
  83. yolov5-7.0/models/hub/yolov5s6.yaml 1.78KB
  84. yolov5-7.0/models/hub/yolov5x6.yaml 1.78KB
  85. yolov5-7.0/models/segment/
  86. yolov5-7.0/models/segment/yolov5l-seg.yaml 1.38KB
  87. yolov5-7.0/models/segment/yolov5m-seg.yaml 1.38KB
  88. yolov5-7.0/models/segment/yolov5n-seg.yaml 1.38KB
  89. yolov5-7.0/models/segment/yolov5s-seg.yaml 1.38KB
  90. yolov5-7.0/models/segment/yolov5x-seg.yaml 1.38KB
  91. yolov5-7.0/models/tf.py 26.38KB
  92. yolov5-7.0/models/yolo.py 17.35KB
  93. yolov5-7.0/models/yolov5l.yaml 1.37KB
  94. yolov5-7.0/models/yolov5m.yaml 1.37KB
  95. yolov5-7.0/models/yolov5n.yaml 1.37KB
  96. yolov5-7.0/models/yolov5s.yaml 1.37KB
  97. yolov5-7.0/models/yolov5x.yaml 1.37KB
  98. yolov5-7.0/requirements.txt 1.5KB
  99. yolov5-7.0/segment/
  100. yolov5-7.0/segment/predict.py 14.66KB
  101. yolov5-7.0/segment/train.py 33.74KB
  102. yolov5-7.0/segment/tutorial.ipynb 41.88KB
  103. yolov5-7.0/segment/val.py 23.32KB
  104. yolov5-7.0/setup.cfg 1.65KB
  105. yolov5-7.0/train.py 32.74KB
  106. yolov5-7.0/tutorial.ipynb 52.58KB
  107. yolov5-7.0/utils/
  108. yolov5-7.0/utils/__init__.py 2.3KB
  109. yolov5-7.0/utils/activations.py 3.37KB
  110. yolov5-7.0/utils/augmentations.py 16.61KB
  111. yolov5-7.0/utils/autoanchor.py 7.25KB
  112. yolov5-7.0/utils/autobatch.py 2.92KB
  113. yolov5-7.0/utils/aws/
  114. yolov5-7.0/utils/aws/__init__.py
  115. yolov5-7.0/utils/aws/mime.sh 780B
  116. yolov5-7.0/utils/aws/resume.py 1.17KB
  117. yolov5-7.0/utils/aws/userdata.sh 1.22KB
  118. yolov5-7.0/utils/callbacks.py 2.6KB
  119. yolov5-7.0/utils/dataloaders.py 54.28KB
  120. yolov5-7.0/utils/docker/
  121. yolov5-7.0/utils/docker/Dockerfile 2.39KB
  122. yolov5-7.0/utils/docker/Dockerfile-arm64 1.64KB
  123. yolov5-7.0/utils/docker/Dockerfile-cpu 1.64KB
  124. yolov5-7.0/utils/downloads.py 4.54KB
  125. yolov5-7.0/utils/flask_rest_api/
  126. yolov5-7.0/utils/flask_rest_api/README.md 1.67KB
  127. yolov5-7.0/utils/flask_rest_api/example_request.py 368B
  128. yolov5-7.0/utils/flask_rest_api/restapi.py 1.41KB
  129. yolov5-7.0/utils/general.py 45.66KB
  130. yolov5-7.0/utils/google_app_engine/
  131. yolov5-7.0/utils/google_app_engine/Dockerfile 821B
  132. yolov5-7.0/utils/google_app_engine/additional_requirements.txt 105B
  133. yolov5-7.0/utils/google_app_engine/app.yaml 174B
  134. yolov5-7.0/utils/loggers/
  135. yolov5-7.0/utils/loggers/__init__.py 16.72KB
  136. yolov5-7.0/utils/loggers/clearml/
  137. yolov5-7.0/utils/loggers/clearml/README.md 10.6KB
  138. yolov5-7.0/utils/loggers/clearml/__init__.py
  139. yolov5-7.0/utils/loggers/clearml/clearml_utils.py 7.38KB
  140. yolov5-7.0/utils/loggers/clearml/hpo.py 5.15KB
  141. yolov5-7.0/utils/loggers/comet/
  142. yolov5-7.0/utils/loggers/comet/README.md 10.39KB
  143. yolov5-7.0/utils/loggers/comet/__init__.py 18.29KB
  144. yolov5-7.0/utils/loggers/comet/comet_utils.py 4.64KB
  145. yolov5-7.0/utils/loggers/comet/hpo.py 6.5KB
  146. yolov5-7.0/utils/loggers/comet/optimizer_config.json 2.95KB
  147. yolov5-7.0/utils/loggers/wandb/
  148. yolov5-7.0/utils/loggers/wandb/README.md 10.55KB
  149. yolov5-7.0/utils/loggers/wandb/__init__.py
  150. yolov5-7.0/utils/loggers/wandb/log_dataset.py 1.01KB
  151. yolov5-7.0/utils/loggers/wandb/sweep.py 1.18KB
  152. yolov5-7.0/utils/loggers/wandb/sweep.yaml 2.41KB
  153. yolov5-7.0/utils/loggers/wandb/wandb_utils.py 27.58KB
  154. yolov5-7.0/utils/loss.py 9.69KB
  155. yolov5-7.0/utils/metrics.py 14.29KB
  156. yolov5-7.0/utils/plots.py 24.69KB
  157. yolov5-7.0/utils/segment/
  158. yolov5-7.0/utils/segment/__init__.py
  159. yolov5-7.0/utils/segment/augmentations.py 3.67KB
  160. yolov5-7.0/utils/segment/dataloaders.py 13.47KB
  161. yolov5-7.0/utils/segment/general.py 4.82KB
  162. yolov5-7.0/utils/segment/loss.py 8.42KB
  163. yolov5-7.0/utils/segment/metrics.py 5.33KB
  164. yolov5-7.0/utils/segment/plots.py 6.24KB
  165. yolov5-7.0/utils/torch_utils.py 19.18KB
  166. yolov5-7.0/utils/triton.py 3.55KB
  167. yolov5-7.0/val.py 19.81KB
  168. yolov5s-seg.pt 14.87MB
0评论
提交 加载更多评论
其他资源 Django框架练习之云笔记项目
Django框架练习之云笔记项目
Processing实验4之灯笼
思路说明:想画一个中国传统文化灯笼,画完之后,添加4个svg图片,用键盘上1、2、3、4这些数字来控制图片数量,转动鼠标会形成一个个圆。按下鼠标会出现图形,图形和图片不会覆盖住灯笼,按下Backspace或者Delete键盘会清空所画的图形,图片数量不会清空而是恢复到只剩下一个图片。灯笼不会受其他影响,除非改变相应的变量。按下S或者s可以保存png图片,按下E或者e可以保存jpg。
日本最大的网站z.zip
日本最大的网站z.zip
qpdf-qpdf-qpdf
qpdf--------
qpdf-qpdf-qpdf
强制关闭Chrome谷歌浏览器自动更新脚本
懒人版
Processing实验2
在实验1的基础上添加了一些东西,比如文字和图像。它们以不同的方式被呈现出来,感兴趣的可以下载玩玩,可以将文字、图片等改成自己喜欢的东西。
CHS视频恢复程序AVI版
CHS_AVI视频恢复程序,支持常见编码封装的AVI文件的恢复和修复,主要功能如下: 1、支持对大容量硬盘(4T以上)的扫描。 2、支持微软主流NTFS、FAT32、EXTFAT文件系统及物理硬盘RAW扫描。 3、支持导入样本文件以进行精确定位。 3、支持AVI外部文件头的引用,对于文件头缺失的AVI文件可以做到自动修复。 5、可以对存储介质任意创建区域进行扫描。 6、支持查看存储介质的HEX值。 7、扫描结果的保存和加载全部自动化。 8、支持损坏AVI文件的修复。
mxf高清视频恢复程序
MXF是一种交换形的视频文件结构,在高清电影拍摄方面很多主流摄像机采用了MXF标准!索尼和佳能是最先使用此文件结构的厂商,在高清的趋势化下又推出了4K画质编码及高达16路的原始音频,由于结构比之前老版本程序有较大变化,所以目前尚无程序能支持此类文件删除、格式化的恢复!CHS实验室工程师经过不断研究,掌握了佳能和索尼MXF的视频、音频底层编码结构,开发出来MXF视频恢复软件,不但可以定位、重组有碎片的MXF,同时会根据文件质量给出相应的恢复建议,是MXF恢复的好助手!