首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

ConvNet ConvNeXt V1 - V2代码

后端 6.85KB 17 需要积分: 1
立即下载

资源介绍:

A ConvNet for the 2020s 和 ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders的网络模型ConvNeXt V1 - V2代码
""" original code from facebook research: https://github.com/facebookresearch/ConvNeXt 来源: https://blog.csdn.net/jiangyangll/article/details/123931086?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522172267156916800186537899%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=172267156916800186537899&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduend~default-2-123931086-null-null.142^v100^pc_search_result_base5&utm_term=convnet%E7%BD%91%E7%BB%9C%E6%9E%B6%E6%9E%84%E5%9B%BE&spm=1018.2226.3001.4187 https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py """ import torch import torch.nn as nn import torch.nn.functional as F def drop_path(x, drop_prob: float = 0., training: bool = False): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class LayerNorm(nn.Module): r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ # channels_first (batch_size, channels, height, width) pytorch官方默认使用 # channels_last (batch_size, height, width, channels) def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape), requires_grad=True) # weight bias对应γ β self.bias = nn.Parameter(torch.zeros(normalized_shape), requires_grad=True) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise ValueError(f"not support data format '{self.data_format}'") self.normalized_shape = (normalized_shape,) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.data_format == "channels_last": return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == "channels_first": # [batch_size, channels, height, width] # 对channels 维度求均值 mean = x.mean(1, keepdim=True) # 方差 var = (x - mean).pow(2).mean(1, keepdim=True) # 减均值,除以标准差的操作 x = (x - mean) / torch.sqrt(var + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x # ConvNeXt Block class ConvNeXt_Block(nn.Module): r""" ConvNeXt Block. There are two equivalent implementations: (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back We use (2) as we find it slightly faster in PyTorch Args: dim (int): Number of input channels. drop_rate (float): Stochastic depth rate. Default: 0.0 layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. """ def __init__(self, dim, drop_rate=0., layer_scale_init_value=1e-6): super().__init__() self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv self.norm = LayerNorm(dim, eps=1e-6, data_format="channels_last") self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.pwconv2 = nn.Linear(4 * dim, dim) # gamma 针对layer scale的操作 self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim,)), requires_grad=True) if layer_scale_init_value > 0 else None self.drop_path = DropPath(drop_rate) if drop_rate > 0. else nn.Identity() # nn.Identity() 恒等映射 def forward(self, x: torch.Tensor) -> torch.Tensor: shortcut = x x = self.dwconv(x) x = x.permute(0, 2, 3, 1) # [N, C, H, W] -> [N, H, W, C] x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 3, 1, 2) # [N, H, W, C] -> [N, C, H, W] x = shortcut + self.drop_path(x) return x class ConvNeXt(nn.Module): r""" ConvNeXt A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf Args: in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] drop_path_rate (float): Stochastic depth rate. Default: 0. layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. """ def __init__(self, in_chans: int = 3, num_classes: int = 1000, depths: list = None, dims: list = None, drop_path_rate: float = 0., layer_scale_init_value: float = 1e-6, head_init_scale: float = 1.): super().__init__() # 最初下采样部分 self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers # Conv2d k4, s4 # LayerNorm stem = nn.Sequential(nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), LayerNorm(dims[0], eps=1e-6, data_format="channels_first")) self.downsample_layers.append(stem) # 对应stage2-stage4前的3个downsample for i in range(3): downsample_layer = nn.Sequential(LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2)) self.downsample_layers.append(downsample_layer) self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple blocks # 等差数列,初始值0,到drop path rate,总共depths个数 dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] cur = 0 # 构建每个stage中堆叠的block for i in range(4): stage = nn.Sequential( *[ConvNeXt_Block(dim=dims[i], drop_rate=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])] ) self.stages.append(stage)

资源文件列表:

ConvNeXt V1 V2 model.zip 大约有2个文件
  1. convnext.py 11.44KB
  2. covnextv2.py 8.49KB
0评论
提交 加载更多评论
其他资源 mybatisplus&CodeGenerator源码.zip
mybatisplus&CodeGenerator源码
c语言实现非常漂亮祝福烟花效果
c语言实现非常漂亮祝福烟花效果
无标题界面跳转以及倒计时
啦啦啦啦啦啦啦
词法分析器,语义分析器
词法分析器,语义分析器
MATLAB车牌识别程序.zip
车牌检测是指通过图像处理技术,从图像中自动检测出车辆的车牌区域。在MATLAB中,可以使用以下步骤进行车牌检测: 1. 读取图像:使用imread函数读取待检测的车辆图像。 2. 图像预处理:对读取的图像进行预处理,如去噪、灰度化、图像增强等。 3. 车牌区域检测:使用图像处理技术,如边缘检测、形态学操作等,通过检测车牌的特征,找出可能的车牌区域。 4. 车牌区域精确定位:对可能的车牌区域进行精确定位,可以使用形状匹配、基于颜色的分割等方法。 5. 车牌字符分割:将车牌区域中的字符进行分割,可以使用图像处理技术,如投影法、连通区域分析等。 6. 字符识别:对分割出的字符进行识别,可以使用模式识别、机器学习技术等。 在MATLAB中,可以使用图像处理工具箱和机器学习工具箱来实现车牌检测。可以使用函数如imread、imfilter、imbinarize等进行图像处理;可以使用函数如edge、imdilate、imfill等进行车牌区域检测;可以使用函数如regionprops、bwconncomp等进行车牌区域精确定位和字符分割;可以使用机器学习工具箱中的分类器进行字符识别
RF-Power-ADS-DesignKit-ADS2024-3p0
这个基准比较了RF中的FET2模型实现Power Design Kit 3.0版本,与之前的版本进行历史比较。该试剂盒被重新编译为ADS2024。所有结果均显示为MS Windows 10 64bit和Red Hat 7 Linux。所有ADS版本都使用相同的测试DC-IV、单音谐波平衡、大信号s参数、小信号s参数和瞬态仿真。所有这些FET2模型都是相同的,除了输入的方法不同模型参数。FET2模型具有硬编码的模型参数进入仿真网表。编码的FET2模型读取加密的从文件中建模参数。文件名被硬编码到模拟中网表。新的FET2模型为波形工程提供支持进入内部漏极到源和电容电流。的波形 工程FET2模型与FET2模型的不同之处在于模型名称和终端的数量。该波形工程FET2模型使其首次出现在ADS2016.01。此外,两款新车型首次亮相:fe2e WFE和fe2ee WFE。这些新型号增加了热增强功能。
RF-Power-ADS-DesignKit-ADS2024-3p0 RF-Power-ADS-DesignKit-ADS2024-3p0 RF-Power-ADS-DesignKit-ADS2024-3p0
AcWing的语法基础课代码整理-第一章
创建一个吸引人的资源描述是吸引访问者的关键。以下是针对您想要发布的“AcWing的语法基础课代码整理”资源的一个示例描述: --- **资源名称:** AcWing的语法基础课代码整理 **资源描述:** 探索编程语言的精髓,从基础到精通 —— 这是一份专为编程爱好者和初学者准备的资源。在这份精心整理的代码合集中,我们汇集了AcWing平台的语法基础课程的核心知识点和示例代码。 **为什么选择我们的资源?** - **全面覆盖**:从基础语法到高级特性,我们的资源覆盖了所有关键概念。 - **易于理解**:每个代码示例都配有清晰的注释,确保即使是编程新手也能轻松理解。 - **实践导向**:通过实际代码示例,快速提升你的编程技能。 - **持续更新**:随着编程语言的发展,我们的资源也会不断更新,确保你总是学习到最新的知识。 **适合人群:** - 编程初学者,希望建立坚实的语法基础。 - 在校学生,需要额外的学习材料来加深理解。 - 专业开发者,想要复习或扩展语法知识。 **资源特色:** - **精选课程内容**:精心挑选的课程内容,确保学习效率。 - **代码示例**
JAVA002打飞机游戏设计(程序+论文).zip
这是“JAVA002 打飞机游戏设计(程序+论文)”,仅供学习参考,请勿商用。
JAVA002打飞机游戏设计(程序+论文).zip