首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

基于flask的天气数据可视化系统

前端 330.2KB 17 需要积分: 1
立即下载

资源介绍:

基于flask的天气数据可视化系统
from flask import Flask, render_template from pyecharts.charts import * from pyecharts import options as opts import pandas as pd app = Flask(__name__) df = pd.read_csv('data/weather.csv') df['date'] = pd.to_datetime(df['date']) df['year'] = df['date'].dt.year df['month'] = df['date'].dt.month @app.route('/') def index(): return render_template("index.html") def get_line(): df_beijing = df[(df['city'] == '北京') & (df['year'] == 2020)].sort_values("date") df_beijing['日期s'] = df_beijing['date'].dt.strftime('%Y/%m/%d') df_beijing['high_temp'] = df_beijing['high_temp'].apply(lambda x: x.replace('℃', '')).astype('int64') df_beijing['low_temp'] = df_beijing['low_temp'].apply(lambda x: x.replace('℃', '')).astype('int64') x_data = df_beijing['日期s'].tolist() y_data1 = df_beijing['high_temp'].tolist() y_data2 = df_beijing['low_temp'].tolist() line = ( Line() .add_xaxis(x_data) .add_yaxis("最高气温", y_data1, is_smooth=False) # is_smooth默认是False,即折线 .add_yaxis("最低气温", y_data2, is_smooth=False) # is_smooth默认是False,即折线 .set_global_opts( title_opts=opts.TitleOpts(title="2020年北京市温度分布图"), toolbox_opts=opts.ToolboxOpts(), legend_opts=opts.LegendOpts(is_show=True, pos_left='center', pos_top='top', item_width=25, item_height=25, legend_icon='circle'), xaxis_opts=opts.AxisOpts(name='日期', name_textstyle_opts=opts.TextStyleOpts(color='red', font_size=20), axislabel_opts=opts.LabelOpts(font_size=15)), yaxis_opts=opts.AxisOpts(name='温度', name_textstyle_opts=opts.TextStyleOpts(color='red', font_size=20), axislabel_opts=opts.LabelOpts(font_size=15), name_location="middle") ) .set_series_opts(label_opts=opts.LabelOpts(is_show=False, position='top', color='black', font_size=15)) ) return line def get_pie(): df_beijing = df[(df['city'] == '北京') & (df['year'] == 2020)].sort_values("date") df_beijing['日期'] = df_beijing['date'].dt.strftime('%Y/%m/%d') df_beijing['high_temp'] = df_beijing['high_temp'].apply(lambda x: x.replace('℃', '')).astype('int64') df_beijing['low_temp'] = df_beijing['low_temp'].apply(lambda x: x.replace('℃', '')).astype('int64') df_beijing['month'] = df_beijing['date'].dt.month dd = ['北风', '西北风', '西风', '西南风', '南风', '东南风', '东风', '东北风'] df_wind_direction = df_beijing.groupby('wind_direction')["wind_direction"].count() x_data = df_wind_direction.index.tolist() y_data = df_wind_direction.values.tolist() dic_tmp = dict([list(z) for z in zip(x_data, y_data)]) values = [dic_tmp[i] for i in dd] c = ( Polar() .add_schema( radiusaxis_opts=opts.RadiusAxisOpts(data=dd, type_="category"), # 设置半径 ) .add("", values, type_="scatter") # bar scatter stack="stack0" .set_global_opts( title_opts=opts.TitleOpts(title="2020年北京市风向分布图"), # 设置标题 tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross") # 设置鼠标悬停工具 ) ) return c def get_bar(): df_beijing = df[(df['city'] == '北京') & (df['year'] == 2020)].sort_values("date") df_beijing['日期'] = df_beijing['date'].dt.strftime('%Y/%m/%d') df_beijing['high_temp'] = df_beijing['high_temp'].apply(lambda x: x.replace('℃', '')).astype('int64') df_beijing['low_temp'] = df_beijing['low_temp'].apply(lambda x: x.replace('℃', '')).astype('int64') df_beijing['month'] = df_beijing['date'].dt.month df_agg = df_beijing.groupby(['month', 'weather']).size().reset_index() df_agg.columns = ['month', 'tianqi', 'count'] # 实例化一个时间序列的对象 timeline = Timeline() # 播放参数:设置时间间隔1s 单位是:ms(毫秒) timeline.add_schema(play_interval=1000) # 循环遍历df_agg['month']里的唯一值 for month in df_agg['month'].unique(): data = ( df_agg[df_agg['month'] == month][['tianqi', 'count']].sort_values(by="count", ascending=True).values.tolist() ) # 绘制柱状图 bar = Bar() # x轴是天气名称 bar.add_xaxis([x[0] for x in data]) # y轴是出现次数 bar.add_yaxis('', [x[1] for x in data]) # 让柱状图横着放 bar.reversal_axis() # 将计数标签放置在图形右边 bar.set_series_opts(label_opts=opts.LabelOpts(position='right')) # 设置下图表的名称 bar.set_global_opts(title_opts=opts.TitleOpts(title="北京市2020年每月天气变化")) # 将设置好的bar对象放置到时间轮播图当中,并且标签选择月份 格式为:数字月 timeline.add(bar, f'{month}月') return timeline @app.route('/line') def line(): line = get_line() return render_template("line.html", line_options=line.dump_options()) @app.route('/pie') def pie(): pie = get_pie() return render_template("pie.html", pie_options=pie.dump_options()) @app.route('/bar') def bar(): bar = get_bar() return render_template("bar.html", bar_options=bar.dump_options()) if __name__ == '__main__': app.run(debug=True)

资源文件列表:

天气数据可视化.zip 大约有17个文件
  1. app.py 5.63KB
  2. data/
  3. data/weather.csv 102.2KB
  4. static/
  5. static/bootstrap/
  6. static/bootstrap/bootstrap.bundle.min.js 81.42KB
  7. static/bootstrap/bootstrap.min.css 158.46KB
  8. static/bootstrap/jquery.slim.min.js 70.68KB
  9. static/echarts.min.js 752.98KB
  10. templates/
  11. templates/bar.html 476B
  12. templates/footer.html 18B
  13. templates/header.html 1.4KB
  14. templates/index.html 117B
  15. templates/line.html 481B
  16. templates/pie.html 476B
  17. templates/show_pyecharts.html 1KB
0评论
提交 加载更多评论
其他资源 希腊地震数据集-1965 年至 2023 年期间希腊发生的地震
希腊地震数据集-1965 年至 2023 年期间希腊发生的地震 介绍 这是希腊的最新和扩展的地震清单,可追溯到 1965 年,并将每年根据前一年发生的地震事件进行更新。 内容 第一列标题为“DATETIME”,表示地震发生的时间。 然后是“LAT”(纬度)和“LONG”(经度)坐标,它们告诉我们地震发生的地点。最后,地震用“DEPTH”(公里)和“MAGNITUDE”(里氏震级)来描述。 可用于地震研究,包括机器学习 深度学习 传统算法等建模研究
BootLoader西西菜鸟-简易BootLoader实现
简易BootLoader实现
qt简单应用win+R运行框
qt简单应用win+R运行框,使用cmake搭建工程
实践操作题9--千峰教育培训网站.zip
实践操作题9--千峰教育培训网站.zip
实践操作题9--千峰教育培训网站.zip 实践操作题9--千峰教育培训网站.zip
网络,华为培训数通领域HCIA PPT
用于华为路由交换初级认证学习
网络,华为培训数通领域HCIA PPT 网络,华为培训数通领域HCIA PPT 网络,华为培训数通领域HCIA PPT
网络,HCIA培训PPT
用于华为认证数通领域初级学习PPT
小熊猫DevC++6.7.5.zip
版本为6.7.5, 目前我认为最好用的c++编译器
基于电力系统潮流计算的IEEE14课程设计matlab程序(含牛顿拉夫逊法和PQ分解法进行极坐标分析)
基于IEEE14设计的matlab程序代码