首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

stable-diffusion部署需要的包

人工智能 1.98MB 17 需要积分: 1
立即下载

资源介绍:

stable-diffusion部署需要的包
--- tags: - vision widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png candidate_labels: playing music, playing sports example_title: Cat & Dog --- # Model Card: CLIP Disclaimer: The model card is taken and modified from the official CLIP repository, it can be found [here](https://github.com/openai/CLIP/blob/main/model-card.md). ## Model Details The CLIP model was developed by researchers at OpenAI to learn about what contributes to robustness in computer vision tasks. The model was also developed to test the ability of models to generalize to arbitrary image classification tasks in a zero-shot manner. It was not developed for general model deployment - to deploy models like CLIP, researchers will first need to carefully study their capabilities in relation to the specific context they’re being deployed within. ### Model Date January 2021 ### Model Type The base model uses a ViT-L/14 Transformer architecture as an image encoder and uses a masked self-attention Transformer as a text encoder. These encoders are trained to maximize the similarity of (image, text) pairs via a contrastive loss. The original implementation had two variants: one using a ResNet image encoder and the other using a Vision Transformer. This repository has the variant with the Vision Transformer. ### Documents - [Blog Post](https://openai.com/blog/clip/) - [CLIP Paper](https://arxiv.org/abs/2103.00020) ### Use with Transformers ```python from PIL import Image import requests from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14") processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ``` ## Model Use ### Intended Use The model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such models - the CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis. #### Primary intended uses The primary intended users of these models are AI researchers. We primarily imagine the model will be used by researchers to better understand robustness, generalization, and other capabilities, biases, and constraints of computer vision models. ### Out-of-Scope Use Cases **Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful. Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use. Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases. ## Data The model was trained on publicly available image-caption data. This was done through a combination of crawling a handful of websites and using commonly-used pre-existing image datasets such as [YFCC100M](http://projects.dfki.uni-kl.de/yfcc100m/). A large portion of the data comes from our crawling of the internet. This means that the data is more representative of people and societies most connected to the internet which tend to skew towards more developed nations, and younger, male users. ### Data Mission Statement Our goal with building this dataset was to test out robustness and generalizability in computer vision tasks. As a result, the focus was on gathering large quantities of data from different publicly-available internet data sources. The data was gathered in a mostly non-interventionist manner. However, we only crawled websites that had policies against excessively violent and adult images and allowed us to filter out such content. We do not intend for this dataset to be used as the basis for any commercial or deployed model and will not be releasing the dataset. ## Performance and Limitations ### Performance We have evaluated the performance of CLIP on a wide range of benchmarks across a variety of computer vision datasets such as OCR to texture recognition to fine-grained classification. The paper describes model performance on the following datasets: - Food101 - CIFAR10 - CIFAR100 - Birdsnap - SUN397 - Stanford Cars - FGVC Aircraft - VOC2007 - DTD - Oxford-IIIT Pet dataset - Caltech101 - Flowers102 - MNIST - SVHN - IIIT5K - Hateful Memes - SST-2 - UCF101 - Kinetics700 - Country211 - CLEVR Counting - KITTI Distance - STL-10 - RareAct - Flickr30 - MSCOCO - ImageNet - ImageNet-A - ImageNet-R - ImageNet Sketch - ObjectNet (ImageNet Overlap) - Youtube-BB - ImageNet-Vid ## Limitations CLIP and our analysis of it have a number of limitations. CLIP currently struggles with respect to certain tasks such as fine grained classification and counting objects. CLIP also poses issues with regards to fairness and bias which we discuss in the paper and briefly in the next section. Additionally, our approach to testing CLIP also has an important limitation- in many cases we have used linear probes to evaluate the performance of CLIP and there is evidence suggesting that linear probes can underestimate model performance. ### Bias and Fairness We find that the performance of CLIP - and the specific biases it exhibits - can depend significantly on class design and the choices one makes for categories to include and exclude. We tested the risk of certain kinds of denigration with CLIP by classifying images of people from [Fairface](https://arxiv.org/abs/1908.04913) into crime-related and non-human animal categories. We found significant disparities with respect to race and gender. Additionally, we found that these disparities could shift based on how the classes were constructed. (Details captured in the Broader Impacts Section in the paper). We also tested the performance of CLIP on gender, race and age classification using the Fairface dataset (We default to using race categories as they are constructed in the Fairface dataset.) in order to assess quality of performance across different demographics. We found accuracy >96% across all races for gender classification with ‘Middle Eastern’ having the highest accuracy (98.4%) and ‘White’ having the lowest (96.5%). Additionally, CLIP averaged ~93% for racial classification and ~63% for age classification. Our use of evaluations to test for gender, race and age classification as well as denigration harms is simply to evaluate performance of the model across people and surface potential risks and not to demonstrate an endorsement/enthusiasm for such tasks. ## Feedback ### Where to send questions or comments about the model Please use [this Google Form](https://forms.gle/Uv7afRH5dvY34ZEs9)

资源文件列表:

openai.zip 大约有17个文件
  1. openai/special_tokens_map.json 389B
  2. openai/vocab.json 938.62KB
  3. openai/tokenizer_config.json 905B
  4. openai/
  5. openai/README.md 7.76KB
  6. openai/config.json 4.41KB
  7. openai/merges.txt 512.32KB
  8. openai/preprocessor_config.json 316B
  9. openai/tokenizer.json 2.12MB
  10. config.json 4.41KB
  11. merges.txt 512.32KB
  12. preprocessor_config.json 316B
  13. special_tokens_map.json 389B
  14. tokenizer.json 2.12MB
  15. tokenizer_config.json 905B
  16. vocab.json 938.62KB
  17. README.md 7.76KB
0评论
提交 加载更多评论
其他资源 豆瓣电影Top250爬取+数据可视化.zip
本项目实现:python+sqlite+Echarts+Wordcloud爬取豆瓣电影Top250并做简单的数据可视化处理
SyntaxHighlighter代码高亮插件
SyntaxHighlighter是Google Code上的一个开源项目,主要用于给网页上的代码着色, 博文参考地址:http://blog.csdn.net/itmyhome1990/article/details/38517737
XGBoost+LightGBM+LSTM-光伏发电量预测
包含比赛代码、数据、训练后的神经网络模型等。 在分析光伏发电原理的基础上,论证了辐照度、光伏板工作温度等影响光伏输出功率的因素,通过实时监测的光伏板运行状态参数和气象参数建立预测模型,预估光伏电站瞬时发电量,根据光伏电站DCS系统提供的实际发电量数据进行对比分析,验证模型的实际应用价值。 1 数据探索与数据预处理 1.1 赛题回顾 1.2 数据探索性分析与异常值处理 1.3 相关性分析 2 特征工程 2.1 光伏发电领域特征 2.2 高阶环境特征 3 模型构建与调试 3.1 预测模型整体结构 3.2 基于LightGBM与XGBoost的构建与调试 3.3 基于LSTM的模型构建与调试 3.4 模型融合与总结 4 总结与展望 参考文献
.net SideBar控件下载
第三方控件 SideBar // 命名空间 using Aptech.UI; // 添加组 sbFriends.AddGroup("我的好友"); sbFriends.AddGroup("陌生人"); // 添加项 SbItem item = new SbItem((string)dataReader["NickName"], (int)dataReader["FaceId"]); sbFriends.Groups[0].Items.Add(item);
罗技GHUB驱动安装包
罗技GHUB调节鼠标,键盘,耳机等设备,更好的服务于自己。
STM32进行FFT傅里叶变换 CUBEMX
STM32进行FFT傅里叶变换 CUBEMX
pb快速操作json库
pb 操作json的demo。支持json的解析和写入。支持大数据快速处理,功能强大。 函数说明见示例代码的global external declare
aircrack-ng-1.0-rc1-win
aircrack-ng1.0 for Windows 破解无线AP专用