Qt、QCustomPlot、实时波形绘制、实时曲线绘制
立即下载
资源介绍:
讲解见博客:https://blog.csdn.net/weixin_47488212/article/details/129299987
对于初学者而言,想要及时地做出一套上位机或实时波形显示界面,还是存在一定难度的,为了降低初学者的学习难度,亦方便其他研发人员的使用,笔者分享一套使用简单、功能强大的实时波形绘制控件,其基于Qt5与QCustomPlot实现。
在项目中必须包含QCustomPlot相关文件,笔者这里是直接包含qcustomplot.cpp、qcustomplot.h两个文件。另外在项目的.pro中,必须包含以下这句:
QT += widgets printsupport
可以使用代码直接实例化WidgetPlot2D,或通过窗口提升,然后使用WidgetPlot2D绘制实时波形只需两步:
① 初始化波形名称:函数initGraphName(QStringList)
② 给对应的波形添加数据:函数addData(QString, double)
/***************************************************************************
** **
** QCustomPlot, an easy to use, modern plotting widget for Qt **
** Copyright (C) 2011-2021 Emanuel Eichhammer **
** **
** This program is free software: you can redistribute it and/or modify **
** it under the terms of the GNU General Public License as published by **
** the Free Software Foundation, either version 3 of the License, or **
** (at your option) any later version. **
** **
** This program is distributed in the hope that it will be useful, **
** but WITHOUT ANY WARRANTY; without even the implied warranty of **
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the **
** GNU General Public License for more details. **
** **
** You should have received a copy of the GNU General Public License **
** along with this program. If not, see http://www.gnu.org/licenses/. **
** **
****************************************************************************
** Author: Emanuel Eichhammer **
** Website/Contact: http://www.qcustomplot.com/ **
** Date: 29.03.21 **
** Version: 2.1.0 **
****************************************************************************/
#include "qcustomplot.h"
/* including file 'src/vector2d.cpp' */
/* modified 2021-03-29T02:30:44, size 7973 */
////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////// QCPVector2D
////////////////////////////////////////////////////////////////////////////////////////////////////
/*! \class QCPVector2D
\brief Represents two doubles as a mathematical 2D vector
This class acts as a replacement for QVector2D with the advantage of double precision instead of
single, and some convenience methods tailored for the QCustomPlot library.
*/
/* start documentation of inline functions */
/*! \fn void QCPVector2D::setX(double x)
Sets the x coordinate of this vector to \a x.
\see setY
*/
/*! \fn void QCPVector2D::setY(double y)
Sets the y coordinate of this vector to \a y.
\see setX
*/
/*! \fn double QCPVector2D::length() const
Returns the length of this vector.
\see lengthSquared
*/
/*! \fn double QCPVector2D::lengthSquared() const
Returns the squared length of this vector. In some situations, e.g. when just trying to find the
shortest vector of a group, this is faster than calculating \ref length, because it avoids
calculation of a square root.
\see length
*/
/*! \fn double QCPVector2D::angle() const
Returns the angle of the vector in radians. The angle is measured between the positive x line and
the vector, counter-clockwise in a mathematical coordinate system (y axis upwards positive). In
screen/widget coordinates where the y axis is inverted, the angle appears clockwise.
*/
/*! \fn QPoint QCPVector2D::toPoint() const
Returns a QPoint which has the x and y coordinates of this vector, truncating any floating point
information.
\see toPointF
*/
/*! \fn QPointF QCPVector2D::toPointF() const
Returns a QPointF which has the x and y coordinates of this vector.
\see toPoint
*/
/*! \fn bool QCPVector2D::isNull() const
Returns whether this vector is null. A vector is null if \c qIsNull returns true for both x and y
coordinates, i.e. if both are binary equal to 0.
*/
/*! \fn QCPVector2D QCPVector2D::perpendicular() const
Returns a vector perpendicular to this vector, with the same length.
*/
/*! \fn double QCPVector2D::dot() const
Returns the dot/scalar product of this vector with the specified vector \a vec.
*/
/* end documentation of inline functions */
/*!
Creates a QCPVector2D object and initializes the x and y coordinates to 0.
*/
QCPVector2D::QCPVector2D() :
mX(0),
mY(0)
{
}
/*!
Creates a QCPVector2D object and initializes the \a x and \a y coordinates with the specified
values.
*/
QCPVector2D::QCPVector2D(double x, double y) :
mX(x),
mY(y)
{
}
/*!
Creates a QCPVector2D object and initializes the x and y coordinates respective coordinates of
the specified \a point.
*/
QCPVector2D::QCPVector2D(const QPoint &point) :
mX(point.x()),
mY(point.y())
{
}
/*!
Creates a QCPVector2D object and initializes the x and y coordinates respective coordinates of
the specified \a point.
*/
QCPVector2D::QCPVector2D(const QPointF &point) :
mX(point.x()),
mY(point.y())
{
}
/*!
Normalizes this vector. After this operation, the length of the vector is equal to 1.
If the vector has both entries set to zero, this method does nothing.
\see normalized, length, lengthSquared
*/
void QCPVector2D::normalize()
{
if (mX == 0.0 && mY == 0.0) return;
const double lenInv = 1.0/length();
mX *= lenInv;
mY *= lenInv;
}
/*!
Returns a normalized version of this vector. The length of the returned vector is equal to 1.
If the vector has both entries set to zero, this method returns the vector unmodified.
\see normalize, length, lengthSquared
*/
QCPVector2D QCPVector2D::normalized() const
{
if (mX == 0.0 && mY == 0.0) return *this;
const double lenInv = 1.0/length();
return QCPVector2D(mX*lenInv, mY*lenInv);
}
/*! \overload
Returns the squared shortest distance of this vector (interpreted as a point) to the finite line
segment given by \a start and \a end.
\see distanceToStraightLine
*/
double QCPVector2D::distanceSquaredToLine(const QCPVector2D &start, const QCPVector2D &end) const
{
const QCPVector2D v(end-start);
const double vLengthSqr = v.lengthSquared();
if (!qFuzzyIsNull(vLengthSqr))
{
const double mu = v.dot(*this-start)/vLengthSqr;
if (mu < 0)
return (*this-start).lengthSquared();
else if (mu > 1)
return (*this-end).lengthSquared();
else
return ((start + mu*v)-*this).lengthSquared();
} else
return (*this-start).lengthSquared();
}
/*! \overload
Returns the squared shortest distance of this vector (interpreted as a point) to the finite line
segment given by \a line.
\see distanceToStraightLine
*/
double QCPVector2D::distanceSquaredToLine(const QLineF &line) const
{
return distanceSquaredToLine(QCPVector2D(line.p1()), QCPVector2D(line.p2()));
}
/*!
Returns the shortest distance of this vector (interpreted as a point) to the infinite straight
line given by a \a base point and a \a direction vector.
\see distanceSquaredToLine
*/
double QCPVector2D::distanceToStraightLine(const QCPVector2D &base, const QCPVector2D &direction) const
{
return qAbs((*this-base).dot(direction.perpendicular()))/direction.length();
}
/*!
Scales this vector by the given \a factor, i.e. the x and y components are multiplied by \a
factor.
*/
QCPVector2D &QCPVector2D::operator*=(double factor)
{
mX *= factor;
mY *= factor;
return *this;
}
/*!
Scales this vector by the given \a divisor, i.e. the x and y components are divided by \a
divisor.
*/
QCPVector2D &QCPVector2D::operator/=(double divisor)
{
mX /= divisor;
mY /= divisor;
return *this;
}
/*!
Adds the given \a vector to this vector component-wise.
*/
QCPVector2D &QCPVector2D::operator+=(const QCPVector2D &vector)
{
mX += vector.mX;
mY += vector.mY;
return *this;
}
/*!
subtracts the given \a vector from this vector component-wise.
*/
QCPVector2D &QCPVector2D::operator-=(const QCPVector2D