首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

零基础学习人工智能—Python—Pytorch学习(三)

编程知识
2024年08月09日 13:30

前言

这篇文章主要两个内容。
一,把上一篇关于requires_grad的内容补充一下。
二,介绍一下线性回归。

关闭张量计算

关闭张量计算。这个相对简单,阅读下面代码即可。

print("============关闭require_grad==============")
x = torch.randn(3, requires_grad=True)
print(x)
x.requires_grad_(False)  # 关闭x的张量计算

print("关闭x的张量计算后的x:", x)  # 没有requires_grad属性了

x = torch.randn(3, requires_grad=True)
print("新的带张量计算的x:", x)
y = x.detach()  # 去出x的张量附加属性,返回普通张量
print("y没有张量属性:", y)
print("x还有张量属性:", x)
print("============区域内去除x的张量附加属性==============")
with torch.no_grad():
    y = x+2
    print("y没有张量属性:", y)
print("x还有张量属性:", x)

一个有趣的例子

代码1如下,代码可以正常运行。

x = torch.tensor(1.0)
y = torch.tensor(2.0)
w = torch.tensor(1.0, requires_grad=True)
y_hat = w*x
loss = (y_hat-y)**2
print(loss)
loss.backward()
print(w.grad)

代码2如下,下面代码不能运行。

x = torch.tensor([1.0,2.0])
y = torch.tensor([1.0,2.0])
w = torch.tensor([1.0,2.0],requires_grad=True)
y_hat = w*x
loss =(y_hat-y)**2
print(loss)
loss.backward()
print(w.grad)

这是因为代码1的loss是个值,是个标量,所以它可以执行backward。
而代码2的loss是个向量,他不能执行backward。

线性回归 linear regression

很多视频或文章都说,深度学习要先理解线性回归。然后,大家一翻线性回归的视频,又是一堆。
其实,完全不用看那些课程,不用耽误那些时间。而且,你耽误了那些时间,也未必能理解。
线性回归是要学,但不用刷视频学,其实简单几句话就能讲明白的。只是没人好好讲而已,似乎都等着我们花费非常多的时间自己研究,自己开悟。

线性回归快速理解

首先理解线性是什么。
A=2,B=4,我们肉眼识别B是A的2倍,所以,我们就可以说A和B有关系,是什么关系呢?就是线性关系;线性就是这个意思,就说俩数有关系。
我们现在有了线性这个词了,今后遇到俩数有倍数关系,我们就直接说俩数有线性关系,这样就高大上了。
上篇文章提过,名词是我们学习阻碍,线性这个名词就是具体体现了。
回归就是我们找到B是A的2倍的过程。简单来说,线性回归就是找到一个数,这个数指明了A和B的关系。
找A和B关系,用函数表示,就是y=wx+b;A带入x,B带入y。肉眼推测结果w=2,b=0。
现在把A和B换成俩矩阵,然后w也就是一个矩阵,b还是一个常数。当我们求出w和b时,就是求出了A和B的线性关系。
到此,我们不用去看三四十个线性回归的视频,就已经对线性回归有概念了。

代码

我们直接看代码,x是特征值,y是目标值。
例如我们有一个青蛙A的图片,他的矩阵就是y,然后找一个青蛙B的图片,x就是青蛙B的矩阵。
然后通过线性回归算出,青蛙B与青蛙A的线性关系(w和b)。
这里输入特征x我们写死,不用读取青蛙B的矩阵;y也不用读取青蛙A,也写死。
然后定义w是一个跟x同型矩阵,然后定义b是一个0张量。
然后利用前面的知识使用backward求梯度,然后得到w.grad和b.grad。
w.grad和b.grad和w,b是同型张量,现在我们用w.grad和b.grad去修正w和b,修正时我们使用learning_rate学习率,确保一次只修改一点点。
然后反复迭代多次,就得到了我们的关系(w和b)。
代码如下:

# 输入特征和目标值
x = torch.tensor([1.0, 2.0])
y = torch.tensor([115.0, 21.0]) 

# 权重初始化(包括偏差项)
w = torch.tensor([1.0, 2.0], requires_grad=True)
b = torch.tensor(0.0, requires_grad=True)

# 学习率
learning_rate = 0.01

# 迭代多次进行优化
for epoch in range(100):
    # 预测
    y_hat = w * x + b
    
    # 损失函数
    loss = (y_hat - y).pow(2).mean()
    
    # 反向传播
    loss.backward()
    
    # 更新权重和偏差
    with torch.no_grad():
        w -= learning_rate * w.grad
        b -= learning_rate * b.grad
    
    # 清零梯度
    w.grad.zero_()
    b.grad.zero_()

    print(f'Epoch {epoch + 1}, Loss: {loss.item()}')

# 最终模型参数
print("Final weights:", w)
print("Final bias:", b)

运行如下图:
image

如图,我循环了100次,但loss的值还是比较大,loss的含义是,越接近0,这个w和b的值就越精确。
当然,如果青蛙A和B实在是不像,那可能循环了1000次,loss还是会很大。
这里我们循环100次后w=[51.8260,-9.4314] b=45.1103
现在我们使用y=wx+b带入x、w、b得到y_pred=51.8260 * 1 +45.1103= 96.9363。我们的y的第一项是115.0。
可以看到x通过wx+b得到的预测值,已经变的很接近y的真实值了。

现在修改运行2000次,运行如下图:
image

y=wx+b带入x、w、b得到y_pred=62.4444 * 1 +52.5554= 114.9998。
而我们的y的第一项是115.0。
可以看到,预测值已经非常接近真实值了。

传送门:
零基础学习人工智能—Python—Pytorch学习(一)
零基础学习人工智能—Python—Pytorch学习(二)

学习就先到这。


注:此文章为原创,任何形式的转载都请联系作者获得授权并注明出处!



若您觉得这篇文章还不错,请点击下方的【推荐】,非常感谢!

https://www.cnblogs.com/kiba/p/18350389

From:https://www.cnblogs.com/kiba/p/18350389
本文地址: http://shuzixingkong.net/article/942
0评论
提交 加载更多评论
其他文章 Kotlin 面向对象编程 (OOP) 基础:类、对象与继承详解
面向对象编程(OOP)是一种编程范式,它通过创建包含数据和方法的对象来组织代码。相较于过程式编程,OOP 提供了更快更清晰的结构,有助于遵守 DRY(Don't Repeat Yourself)原则,使代码更易于维护和扩展。在 Kotlin 中,类和对象是 OOP 的核心。类作为对象的模板,
Python按条件删除Excel表格数据的方法
本文介绍基于Python语言,读取Excel表格文件,基于我们给定的规则,对其中的数据加以筛选,将不在指定数据范围内的数据剔除,保留符合我们需要的数据的方法~
Python按条件删除Excel表格数据的方法
Python 提取出SQL语句中Where的值的方法
本文简要介绍了Python中提取出SQL语句中Where的值的两种方法,分别是使用sqlparse库和使用正则表达式的方法,并给出了详细的代码示例,一目了然。
ComfyUI插件:ComfyUI_Noise节点
前言: 学习ComfyUI是一场持久战,ComfyUI_Noise是对ComfyUI中的噪声进行控制的一个插件库,该库可以完成图像噪声的反推,并通过采样再以几乎无损的方式返回原图,通过该库的使用可以更好的帮助图像恢复原始的相貌,非常适合在生成视频领域用作人物转绘使用。祝大家学习顺利,早日成为Comf
ComfyUI插件:ComfyUI_Noise节点 ComfyUI插件:ComfyUI_Noise节点 ComfyUI插件:ComfyUI_Noise节点
uniapp苹果开发用什么截屏
uniapp开发好苹果的app后,需要上架到app store connect后,用户才能使用app store进行安装。 在上架app store的过程中,却要求我们提供多种尺寸的app运行的设备截屏,截止于当前的版本,要6.7寸的、6.5寸的、5.5寸的,还有ipad 2代和4代13寸的。 这么
uniapp苹果开发用什么截屏
Digest Auth 摘要认证
1、该代码展示了使用Apache HttpClient库进行HTTP请求,并处理基于MD5的HTTP Digest认证的过程。 Digests类实现了MD5加密算法,HttpUtils类处理了GET、POST、PUT和DELETE方法的请求,包括设置请求头、生成授权信息和处理响应。 2、请求流程 2
Digest Auth 摘要认证
关于最近面试的一些心得
回来了一段时间,在某招聘App上陆续有一些人主动找上门,但是基本都是毫无针对性的询问对岗位是否有意向。也陆续投了一些公司的,但是基本都是石沉大海。 一些人跟我说现在大环境不好,招聘的岗位少。这种思维我不敢苟同,只能说很多企业自身经营都成问题,只是借大环境不好来掩盖真实的问题所在。 有一家公司很积极撮
运维 + AI,你得先搞懂这些
很感谢夜莺提供如此优质的平台能和行业内顶尖技术大佬做面对面的交流,在这个会议中又学习到了很多有趣有深度的内容,给我在未来探索的道路上提供了一些新的指引方向。同时感谢夜莺社区的邀请,在此再做一次关于AI方面的交流文章,由于目前我也是在AI这条赛道上的探索者,如果有不专业的地方还希望各位手下留情,同时希
运维 + AI,你得先搞懂这些 运维 + AI,你得先搞懂这些 运维 + AI,你得先搞懂这些