首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

从DDPM到DDIM(四) 预测噪声与后处理

编程知识
2024年07月29日 17:19

从DDPM到DDIM(四) 预测噪声与后处理

前情回顾

下图展示了DDPM的双向马尔可夫模型。
img

训练目标。最大化证据下界等价于最小化以下损失函数:

\[\boldsymbol{\theta}^*=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{t=1}^T \frac{1}{2 \sigma^2(t)} \frac{\left(1-\alpha_t\right)^2 \overline{\alpha}_{t-1}}{\left(1-\overline{\alpha}_t\right)^2} \mathbb{E}_{q\left(\mathbf{x}_t \mid \mathbf{x}_0\right)}\left[\Vert\tilde{\mathbf{x}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right)-\mathbf{x}_0\Vert_2^2\right] \tag{1} \]

推理过程。推理过程利用马尔可夫链蒙特卡罗方法。

\[\begin{aligned} \mathbf{x}_{t-1} &\sim p_{\theta}\left(\mathbf{x}_{t-1} | \mathbf{x}_{t}\right) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\bm{\mu}}_{\theta}\left(\mathbf{x}_{t}, t\right) , \sigma^2 \left(t\right) \mathbf{I}) \\ \mathbf{x}_{t-1} &= \tilde{\bm{\mu}}_{\theta}\left(\mathbf{x}_{t}, t\right) + \sigma \left(t\right) \bm{\epsilon} \\ &= \frac{\left( 1 - \overline{\alpha}_{t-1} \right) \sqrt{\alpha_t}}{\left( 1 - \overline{\alpha}_{t} \right)} \mathbf{x}_{t} + \frac{\left(1 - \alpha_t\right) \sqrt{\overline{\alpha}_{t-1}}}{\left( 1 - \overline{\alpha}_{t} \right)} \tilde{\mathbf{x}}_{\theta} \left(\mathbf{x}_{t}, t\right) + \sigma \left(t\right) \bm{\epsilon} \end{aligned} \tag{2} \]

1、预测噪声

  上一篇文章我们提到,扩散模型的神经网络用于预测 \(\mathbf{x}_{0}\),然而DDPM并不是这样做的,而是用神经网络预测噪声。这也是DDPM 第一个字母 D(Denoising)的含义。为什么采用预测噪声的参数化方法?DDPM作者在原文中提到去噪分数匹配(denoising score matching, DSM),并说这样训练和DSM是等价的。可见应该是收了DSM的启发。另外一个解释我们一会来讲。

  按照上一篇文章的化简技巧,对于神经网络的预测输出 \(\tilde{\mathbf{x}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right)\),也可以进行进一步参数化(parameterization):
已知:

\[\begin{aligned} \mathbf{x}_{t} = \sqrt{\overline{\alpha}_t} \mathbf{x}_{0} + \sqrt{1 - \overline{\alpha}_t} \bm{\epsilon} \end{aligned} \tag{3} \]

于是:

\[\begin{aligned} \mathbf{x}_{0} = \frac{1}{\sqrt{\overline{\alpha}_t}} \mathbf{x}_{t} + \frac{\sqrt{1 - \overline{\alpha}_t}}{\sqrt{\overline{\alpha}_t}} \bm{\epsilon} \end{aligned} \tag{4} \]

\[\begin{aligned} \tilde{\mathbf{x}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right) = \frac{1}{\sqrt{\overline{\alpha}_t}} \mathbf{x}_{t} + \frac{\sqrt{1 - \overline{\alpha}_t}}{\sqrt{\overline{\alpha}_t}} \tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right) \end{aligned} \tag{5} \]

这里我们解释以下为什么采用预测噪声的方式的第二个原因。从(4)(5)两式可见,噪声项可以看作是 \(\mathbf{x}_{0}\)\(\mathbf{x}_{t}\) 的残差项。回顾经典的Resnet结构:

\[\left[\mathbf{y}=\mathbf{x}+\mathcal{F}\left(\mathbf{x}, W_i\right)\right] \]

Resnet也是用神经网络学习的残差项。DDPM采用预测噪声的方法和Resnet残差学习由异曲同工之妙。

  下面我们将(3)(4)两式代入(1)式,继续化简,有:

\[\begin{aligned} \Vert\tilde{\mathbf{x}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right)-\mathbf{x}_0\Vert_2^2 &= \frac{1 - \overline{\alpha}_t}{\overline{\alpha}_t} \Vert\tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right)-\bm{\epsilon}\Vert_2^2 \end{aligned} \]

注意 \(\overline{\alpha}_t\) = \(\overline{\alpha}_{t-1} \alpha_t\)于是可以得出新的优化方程:

\[\boldsymbol{\theta}^*=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{t=1}^T \frac{1}{2 \sigma^2(t)} \frac{\left(1-\alpha_t\right)^2}{\left(1-\overline{\alpha}_t\right) \alpha}_t \mathbb{E}_{q\left(\mathbf{x}_t \mid \mathbf{x}_0\right)}\left[\Vert\tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\sqrt{\overline{\alpha}_t} \mathbf{x}_{0} + \sqrt{1 - \overline{\alpha}_t} \bm{\epsilon}, t\right)-\bm{\epsilon}\Vert_2^2\right] \tag{6} \]

(6) 式表示,我们的神经网络 \(\tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\sqrt{\overline{\alpha}_t} \mathbf{x}_{0} + \sqrt{1 - \overline{\alpha}_t} \bm{\epsilon}, t\right)\) 被用于预测最初始的噪声 \(\bm{\epsilon}\)。忽略掉前面的系数,对应的训练算法如下:


Algorithm 3 . Training a Deniosing Diffusion Probabilistic Model. (Version: Predict noise)

Repeat the following steps until convergence.

  • For every image \(\mathbf{x}_0\) in your training dataset \(\mathbf{x}_0 \sim q\left(\mathbf{x}_0\right)\)
  • Pick a random time step \(t \sim \text{Uniform}[1, T]\).
  • Generate normalized Gaussian random noise \(\bm{\epsilon} \sim \mathcal{N} \left(\mathbf{0}, \mathbf{I}\right)\)
  • Take gradient descent step on

\[\nabla_{\boldsymbol{\theta}} \Vert\tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\sqrt{\overline{\alpha}_t} \mathbf{x}_{0} + \sqrt{1 - \overline{\alpha}_t} \bm{\epsilon}, t\right)-\bm{\epsilon}\Vert_2^2 \]

You can do this in batches, just like how you train any other neural networks. Note that, here, you are training one denoising network \(\tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\) for all noisy conditions.


推理的过程依然从马尔可夫链蒙特卡洛(MCMC)开始,因为这里是预测噪声,而推理的过程中也需要加噪声,为了区分,我们将推理过程中添加的噪声用 \(\mathbf{z} \sim \mathcal{N} \left(\mathbf{0}, \mathbf{I}\right)\) 来表示。推理过程中每次推理的噪声 \(\mathbf{z}\) 都是不同的,但训练过程中要拟合的最初的目标噪声 \(\bm{\epsilon}\) 是相同的

\[\begin{aligned} \mathbf{x}_{t-1} &\sim p_{\theta}\left(\mathbf{x}_{t-1} | \mathbf{x}_{t}\right) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\bm{\mu}}_{\theta}\left(\mathbf{x}_{t}, t\right) , \sigma^2 \left(t\right) \mathbf{I}) \\ \mathbf{x}_{t-1} &= \tilde{\bm{\mu}}_{\theta}\left(\mathbf{x}_{t}, t\right) + \sigma \left(t\right) \mathbf{z} \\ &= \frac{\left( 1 - \overline{\alpha}_{t-1} \right) \sqrt{\alpha_t}}{\left( 1 - \overline{\alpha}_{t} \right)} \mathbf{x}_{t} + \frac{\left(1 - \alpha_t\right) \sqrt{\overline{\alpha}_{t-1}}}{\left( 1 - \overline{\alpha}_{t} \right)} \tilde{\mathbf{x}}_{\theta} \left(\mathbf{x}_{t}, t\right) + \sigma \left(t\right) \mathbf{z} \end{aligned} \tag{7} \]

将(5)式代入:

\[\begin{aligned} \tilde{\bm{\mu}}_{\theta}\left(\mathbf{x}_{t}, t\right) &= \frac{\left( 1 - \overline{\alpha}_{t-1} \right) \sqrt{\alpha_t}}{\left( 1 - \overline{\alpha}_{t} \right)} \mathbf{x}_{t} + \frac{\left(1 - \alpha_t\right) \sqrt{\overline{\alpha}_{t-1}}}{\left( 1 - \overline{\alpha}_{t} \right)} \tilde{\mathbf{x}}_{\theta} \left(\mathbf{x}_{t}, t\right) \\ &= \frac{\left( 1 - \overline{\alpha}_{t-1} \right) \sqrt{\alpha_t}}{\left( 1 - \overline{\alpha}_{t} \right)} \mathbf{x}_{t} + \frac{\left(1 - \alpha_t\right) \sqrt{\overline{\alpha}_{t-1}}}{\left( 1 - \overline{\alpha}_{t} \right)} \left( \frac{1}{\sqrt{\overline{\alpha}_t}} \mathbf{x}_{t} + \frac{\sqrt{1 - \overline{\alpha}_t}}{\sqrt{\overline{\alpha}_t}} \tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right) \right) \\ &= \text{some algebra calculation} \\ &= \frac{1}{\sqrt{\overline{\alpha}_t}} \mathbf{x}_{t} + \frac{1 - \alpha_t}{ \sqrt{ \left( 1 - \overline{\alpha}_{t} \right)\alpha}_t} \tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right) \end{aligned} \]

所以推理的表达式为:

\[\begin{aligned} \mathbf{x}_{t-1} &= \frac{1}{\sqrt{\overline{\alpha}_t}} \mathbf{x}_{t} + \frac{1 - \alpha_t}{ \sqrt{ \left( 1 - \overline{\alpha}_{t} \right)\alpha}_t} \tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right) + \sigma \left(t\right) \mathbf{z} \end{aligned} \tag{7} \]

下面可以写出采用拟合噪声策略的推理算法:


Algorithm 4 . Inference on a Deniosing Diffusion Probabilistic Model. (Version: Predict noise)

You give us a white noise vector \(\mathbf{x}_T \sim \mathcal{N} \left(\mathbf{0}, \mathbf{I}\right)\)

Repeat the following for \(t = T, T − 1, ... , 1\).

  • Generate \(\mathbf{z} \sim \mathcal{N} \left(\mathbf{0}, \mathbf{I}\right)\) if \(t > 1\) else \(\mathbf{z} = \mathbf{0}\)

\[\mathbf{x}_{t-1} = \frac{1}{\sqrt{\overline{\alpha}_t}} \mathbf{x}_{t} + \frac{1 - \alpha_t}{ \sqrt{ \left( 1 - \overline{\alpha}_{t} \right)\alpha}_t} \tilde{\bm{\epsilon}}_{\boldsymbol{\theta}}\left(\mathbf{x}_t, t\right) + \sigma \left(t\right) \mathbf{z} \]

Return \(\mathbf{x}_{0}\)


2、后处理

首先要注意到,在推理算法的最后一步,生成图像的时候,并没有添加噪声,而是直接采用预测的均值作为 \(\mathcal{x}_0\) 的估计值。

另外,生成的图像原本是归一化到 \([-1, 1]\) 之间的,所以要反归一化到 \([0, 255]\)。这里比较简单,直接看 diffusers 库中的代码:


image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
    image = self.numpy_to_pil(image)

if not return_dict:
    return (image,)


def numpy_to_pil(images):
    """
    Convert a numpy image or a batch of images to a PIL image.
    """
    if images.ndim == 3:
        images = images[None, ...]
    images = (images * 255).round().astype("uint8")
    if images.shape[-1] == 1:
        # special case for grayscale (single channel) images
        pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
    else:
        pil_images = [Image.fromarray(image) for image in images]

    return pil_images

3、总结

  我们最初的目标是估计图像的概率分布,采用极大似然估计法,求 \(\log p\left(\mathbf{x}_0\right)\)。但是直接求解,很难求:

\[\begin{aligned} p\left(\mathbf{x}_0\right) = \int p\left(\mathbf{x}_{0:T}\right) d \mathbf{x}_{1:T} \\ \end{aligned} \\ \]

  而且 \(p\left(\mathbf{x}_{0:T}\right)\) 也不知道。于是我们选择估计它的证据下界。在计算证据下界的过程中,我们解析了双向马尔可夫链中的很多分布和变量,最终推导出证据下界的表达式,以KL散度的方式来表示。这样做本质上是用已知的分布 \(q\left(\mathbf{x}_{1:T} | \mathbf{x}_{0}\right)\) 来对未知的分布做逼近。这其实是 变分推断 的思想。变分法是寻找一个函数使得这个函数最能满足条件,而变分推断是寻找一个分布使之更加逼近已知的分布。

  于是我们而在高斯分布的假设下,KL散度恰好等价于二范数的平方。最大似然估计等价于最小化二范数loss。之后就顺理成章地推导出了训练方法,并根据马尔可夫链蒙特卡洛推导出推理算法。关于变分推断和马尔可夫链蒙特卡洛相关的知识,读者可以自行查找,有时间我也会写篇文章来介绍。

  以上就是DDPM的全部内容了,我用了四篇文章对DDPM进行了详细推导,写文章的过程中也弄懂了自己之前不懂的一些细节。我的最大的感受是,初学者千万不要相信诸如《一文读懂DDPM》之类的文章,如果要真正搞懂DDPM,只有自己把所有公式手推一边才是正道。

下一篇我们开始介绍DDPM的一个经典的推理加速方法:DDIM

From:https://www.cnblogs.com/txdt/p/18330754
本文地址: http://shuzixingkong.net/article/565
0评论
提交 加载更多评论
其他文章 支付宝退款和结果查询接口简单实现(.Net 7.0)
〇、前言 支付宝对 .Net 的支持还是比较充分的,在每个接口文档中都有关于 C# 语言的示例,这样就大大降低了对接的难度,很容易上手。 官方接口文档地址:退款-alipay.trade.refund 退款状态查询-alipay.trade.fastpay.refund.query 本文就简单实现下
支付宝退款和结果查询接口简单实现(.Net 7.0) 支付宝退款和结果查询接口简单实现(.Net 7.0)
《最新出炉》系列入门篇-Python+Playwright自动化测试-57- 上传文件 - 番外篇
1.简介 前边的三篇文章基本上对文件上传的知识介绍和讲解的差不多了,今天主要是来分享宏哥在文件上传的实际操作中发现的一个问题:input控件和非input控件的上传API对其都可以上传成功。废话不多说直接进入正题。 2.项目实战 宏哥之前在讲解和分享Java+selenium系列时,将其划分为非in
《最新出炉》系列入门篇-Python+Playwright自动化测试-57- 上传文件 - 番外篇 《最新出炉》系列入门篇-Python+Playwright自动化测试-57- 上传文件 - 番外篇 《最新出炉》系列入门篇-Python+Playwright自动化测试-57- 上传文件 - 番外篇
编译期链接时共享库搜索路径优先级实验
目录前言实验环境目录说明准备工作单独测试不配置路径默认路径LIBRARY_PATH-L优先级测试默认路径和LIBRARY_PATH-L和默认路径DEBUG模式编译器配置详细信息链接器详细信息DEBUG总结验证默认路径>LIBRARY_PATH原因附录库文件源码主程序源码makefile 前言
编译期链接时共享库搜索路径优先级实验 编译期链接时共享库搜索路径优先级实验 编译期链接时共享库搜索路径优先级实验
ComfyUI插件:ComfyUI Impact 节点(三)
前言: 学习ComfyUI是一场持久战,而 ComfyUI Impact 是一个庞大的模块节点库,内置许多非常实用且强大的功能节点 ,例如检测器、细节强化器、预览桥、通配符、Hook、图片发送器、图片接收器等等。通过这些节点的组合运用,我们可以实现的工作有很多,例如自动人脸检测和优化修复、区域增强、
ComfyUI插件:ComfyUI Impact 节点(三) ComfyUI插件:ComfyUI Impact 节点(三) ComfyUI插件:ComfyUI Impact 节点(三)
安全可信,Solon v2.8.6 发布
Java “纯血国产”应用开发框架:更快、更小、更简单。 并发高 2~ 3 倍;内存省 50%;调试重启可快至 10 倍;打包最多缩小 90%;同时支持 java8 ~ java22, graalvm native image 运行时。
C++命名空间、标准输入输出、引用
1、简述C++中命名空间的作用。 答:避免重复定义全局变量的问题。 2、定义两个命名空间A 和 B 分别在A中和B中定义变量value。在main函数中将两个空间的value打印出来。 #include "iostream" using namespace std; namesp
软件测试必备 - 14个接口与自动化测试练习网站
随着互联网和移动应用的快速发展,接口和自动化测试的重要性日益凸显。越来越多的企业开始重视API测试,因为它不仅能提升开发效率,还能确保系统的稳定性和安全性。这些练习网站为测试人员提供了宝贵的资源,帮助他们掌握必要的技能,应对日益复杂的测试需求。 在软件测试的世界里,接口与自动化测试是提升效率和确保质
软件测试必备 - 14个接口与自动化测试练习网站 软件测试必备 - 14个接口与自动化测试练习网站 软件测试必备 - 14个接口与自动化测试练习网站
.NET 高性能缓冲队列实现 BufferQueue
目录前言适用场景功能说明使用示例BufferQueue 内部设计概述Topic 的隔离Partition 的设计对并发的支持Partition 的动态扩容Segment 的回收机制Benchmark写入性能测试消费性能测试 前言 BufferQueue 是一个用 .NET 编写的高性能的缓冲队列实现
.NET 高性能缓冲队列实现 BufferQueue .NET 高性能缓冲队列实现 BufferQueue .NET 高性能缓冲队列实现 BufferQueue