本随笔是非常菜的菜鸡写的。如有问题请及时提出。
可以联系:1160712160@qq.com
GitHhub:https://github.com/WindDevil (目前啥也没有
因为risc-v存在硬件特权级机制,我们又要实现一个可以使得应用程序工作在用户级,使得操作系统工作在特权级.原因是要保证用户态的应用程序不能随意使用内核态的指令,要使用内核态的指令就必须通过操作系统来执行,这样有了操作系统的控制和检查,程序不会因为应用程序的问题导致整个操作系统都运行错误.
回到我们之前提到的那张图:
可以看到,对应地SEE
即 Supervisor Execution Enviroment ,顾名思义是在Machine
机器层构建的 特权级应用运行环境 .
我们通过Rust-SBI
建立了一个SBI
Supervisor Binary Interface ,顾名思义是 特权级二进制接口 , 把 机器层 的一些指令 抽象 化了,我们在实现 特权级应用 时调用这个接口来实现,这样就可以使得特权级应用可以方便地 移植到 实现不同拓展指令集的RISC-V架构的 处理器 上.
上一大章我们实现了一个OS
Operating System ,也就是 操作系统 , 它实际上就是一个调用了SBI
的 特权级应用 .
那么照葫芦画瓢,现在我们需要实现一个AEE
Application Execution Environment , 顾名思义是 应用运行环境 , 并且实现ABI
Application Binary Interface 应用程序二进制接口, 使得用户层的应用可以通过调用ABI
从而可以移植到任何 操作系统 上.
上一节我们实现了一个应用程序加载器,重新回味之前对于 特权级机制 的描述:
首先,操作系统需要提供相应的功能代码,能在执行 sret
前准备和恢复用户态执行应用程序的上下文。其次,在应用程序调用 ecall
指令后,能够检查应用程序的系统调用参数,确保参数不会破坏操作系统。
那么把上一大章实现的操作系统,上一节实现的批处理功能和上上节实现的应用程序组装起来的正是 应用程序的上下文保存,特权级切换,监控应用程序运行 的功能.
具体的实现方法分为以下几部分,直接从官方文档求取过来:
sys_exit
来实现的)。这些处理都涉及到特权级切换,因此需要应用程序、操作系统和硬件一起协同,完成特权级切换机制。
当从一般意义上讨论 RISC-V 架构的 Trap 机制时,通常需要注意两点:
但是实际上我们之前也提到过,关于(Hypervisor, H
)模式的特权规范还没完全制定好,而M
特权级的机制细节则是作为可选内容在 附录 C:深入机器模式:RustSBI 中讲解,因为我们已经引用了Rust-SBI
,所以只需要关心U
特权级和S
特权级的切换.
当 CPU 在用户态特权级( RISC-V 的 U 模式)运行应用程序,执行到 Trap,切换到内核态特权级( RISC-V的S 模式),批处理操作系统的对应代码响应 Trap,并执行系统调用服务,处理完毕后,从内核态返回到用户态应用程序继续执行后续指令。
官方文档对RISC-V架构的Trap
特性做了详细介绍,大概就是 低优先级 的应用不会触发 高优先级 的Trap
:
在 RISC-V 架构中,关于 Trap 有一条重要的规则:在 Trap 前的特权级不会高于 Trap 后的特权级。因此如果触发 Trap 之后切换到 S 特权级(下称 Trap 到 S),说明 Trap 发生之前 CPU 只能运行在 S/U 特权级。但无论如何,只要是 Trap 到 S 特权级,操作系统就会使用 S 特权级中与 Trap 相关的 控制状态寄存器 (CSR, Control and Status Register) 来辅助 Trap 处理。我们在编写运行在 S 特权级的批处理操作系统中的 Trap 处理相关代码的时候,就需要使用如下所示的 S 模式的 CSR 寄存器。
这段还提到了关于CSR
的内容,CSR
Control and Status Register ,顾名思义 控制和状态寄存器 , 储存了当前Trap
的状态信息,并且可以控制Trap
代码的部分功能.这些寄存器在这里有详尽的描述.
注意 sstatus
是 S 特权级最重要的 CSR,可以从多个方面控制 S 特权级的 CPU 行为和执行状态。
回想之前学到的关于触发异常Trap
的情况:
sret
指令(表示从 S 模式返回到 U 模式)sstatus
等对于 寄存器 级,官方文档有了更详细的说法,当 CPU 执行完一条指令(如 ecall
)并准备从用户特权级 陷入( Trap
)到 S 特权级的时候,硬件会自动完成如下这些事情:
sstatus
的 SPP
字段会被修改为 CPU 当前的特权级(U/S)。sepc
会被修改为 Trap 处理完成后默认会执行的下一条指令的地址。scause/stval
分别会被修改成这次 Trap 的原因以及相关的附加信息。stvec
所设置的 Trap 处理入口地址,并将当前特权级设置为 S ,然后从Trap 处理入口地址处开始执行。在 RV64 中, stvec
是一个 64 位的 CSR,在中断使能的情况下,保存了中断处理的入口地址。它有两个字段:
当 MODE 字段为 0 的时候, stvec
被设置为 Direct 模式,此时进入 S 模式的 Trap 无论原因如何,处理 Trap 的入口地址都是 BASE<<2
, CPU 会跳转到这个地方进行异常处理。本书中我们只会将 stvec
设置为 Direct 模式。而 stvec
还可以被设置为 Vectored 模式,有兴趣的同学可以自行参考 RISC-V 指令集特权级规范。
回想到之前学到的异常控制流,stvec
可以帮助我们切换到特权级切换后的处理Trap
的地址:
sret
指令(表示从 S 模式返回到 U 模式)sstatus
等而当 CPU 完成 Trap 处理准备返回的时候,需要通过一条 S 特权级的特权指令 sret
来完成,这一条指令具体完成以下功能:
sstatus
的 SPP
字段设置为 U 或者 S ;sepc
寄存器指向的那条指令,然后继续执行。同上所述, sret
可以帮我们完成 上下文储存 和 恢复 .
我们刚刚提到了有关于stvec
和sret
的作用,sstatus
可以给出Trap
发生之前CPU处于哪个特权级,stval
可以给出Trap
附加信息,可以在Trap
发生时保存里边的内容.
但是我们不能把脑子只沉浸在切换优先级这件事上,就像在使用asm
开发mcu
的时候,我们需要把寄存器的数据压到栈里,等需要的时候再取出来一样.我们也需要保存用户的上下文.
更抽象地讲,我们把切换优先级类似地看成是C语言调用了"内核库"(虚构)的函数,导致了函数嵌套调用一样.
这时候我们就可以很自然地想到,上一章学到的函数调用栈,同样地,我们实现 内存分配 和 出栈入栈 也可以实现这样一个栈.
但是考虑到我们实现的这个调用栈本身是使用了sp
指针的,而我们如果要主动保存用户上下文则需要自己实现 入栈出栈 ,并且更重要的是我们需要能够 分配一片地址 .
在 Trap 触发的一瞬间, CPU 就会切换到 S 特权级并跳转到 stvec
所指示的位置。但是在正式进入 S 特权级的 Trap 处理之前,上面 提到过我们必须保存原控制流的 寄存器状态 ,这一般通过 内核栈 来保存。注意,我们需要用专门为操作系统准备的内核栈,而不是应用程序运行时用到的用户栈。
使用两个 不同的栈 主要是为了 安全性:如果两个控制流(即应用程序的控制流和内核的控制流)使用同一个栈,在返回之后应用程序就能读到 Trap 控制流的历史信息,比如内核一些函数的地址,这样会带来安全隐患。于是,我们要做的是,在批处理操作系统中添加一段汇编代码,实现从用户栈切换到内核栈,并在 内核栈 上保存应用程序控制流的 寄存器状态。
也就是说,使用两个栈也是为了分开优先级,使得应用程序能够访问的U
特权级的数据只能由应用程序访问,而S
级别的数据只能由内核访问.因此储存两个等级的数据的栈也要实现两个.
现在运行在U
级上的应用数据被储存在 用户栈 , 而运行在S
级上的应用(内核API)被储存在 内核栈 .那么怎么切换运行状态呢?
答案是只需要修改sp
寄存器的值就可以更换当前程序运行位置,那么我们要做的其实是 切换栈 ,在特权级切换的过程中完成栈切换.
那么怎么具体实现这个栈呢?官方文档给出了参考,简要说就是对 数组 进行封装,并且为它实现一个可以返回作为 栈顶地址 的数组地址的方法,然后实例化这样的结构体,当作 单例 使用:
// os/src/batch.rs
const USER_STACK_SIZE: usize = 4096 * 2;
const KERNEL_STACK_SIZE: usize = 4096 * 2;
#[repr(align(4096))]
struct KernelStack {
data: [u8; KERNEL_STACK_SIZE],
}
#[repr(align(4096))]
struct UserStack {
data: [u8; USER_STACK_SIZE],
}
static KERNEL_STACK: KernelStack = KernelStack { data: [0; KERNEL_STACK_SIZE] };
static USER_STACK: UserStack = UserStack { data: [0; USER_STACK_SIZE] };
impl UserStack {
fn get_sp(&self) -> usize {
self.data.as_ptr() as usize + USER_STACK_SIZE
}
}
impl KernelStack {
fn get_sp(&self) -> usize {
self.data.as_ptr() as usize + KERNEL_STACK_SIZE
}
}
这里注意#[repr(align(N))]
表示该类型在内存中的对齐方式应至少为 N
字节.
接下来就需要保存Trap
发生后的寄存器上下文,并且保存到内核栈中了,这个可以分为三步做:
我们看官方文档,可以看到除了我们自己看功能就知道要储存的一众CSR
寄存器,还有通用寄存器x0~x31
需要储存:
x0
被硬编码为 0 ,它自然不会有变化;还有 tp(x4)
寄存器,除非我们手动出于一些特殊用途使用它,否则一般也不会被用到。虽然它们无需保存,但我们仍然在 TrapContext
中为它们预留空间,主要是为了后续的实现方便。scause/stval/sstatus/sepc
的全部或是其中一部分。scause/stval
的情况是:它总是在 Trap 处理的第一时间就被使用或者是在其他地方保存下来了,因此它没有被修改并造成不良影响的风险。而对于 sstatus/sepc
而言,它们会在 Trap 处理的全程有意义(在 Trap 控制流最后 sret
的时候还用到了它们),而且确实会出现 Trap 嵌套的情况使得它们的值被覆盖掉。所以我们需要将它们也一起保存下来,并在 sret
之前恢复原样。这时候就需要设计一个结构体来储存这些寄存器的值:
// os/src/trap/context.rs
#[repr(C)]
pub struct TrapContext {
pub x: [usize; 32],
pub sstatus: Sstatus,
pub sepc: usize,
}
可以看到这里使用一个大小为32
的数组储存x0~x31
,并且使用一个Sstatus
的结构体保存sstatus
寄存器,用uszie
的一个变量保存sepc
寄存器.
其中Sstatus
结构体是riscv::register
这个包里专门用来储存sstatus
寄存器的一个包,sstatus
寄存器的一些主要字段包括:
因此专门用一个结构体来储存它的信息也是合理的,既然有设计好的轮子我们没有理由不用.
这里这个#[repr(C)]
没用搞清楚,看起来像是和C语言相关的某些玩意,我们问一下同义千问:
#[repr(C)]
是 Rust 语言中的一个属性,用于控制结构体(struct)或联合体(union)的布局和表示形式。具体来说,#[repr(C)]
指示 Rust 编译器按照 C 语言的规则来布局结构体或联合体。
为什么使用 #[repr(C)]
?
#[repr(C)]
可以帮助你做到这一点。#[repr(C)]
的行为特点:具体地,在os/src
目录下创建trap
文件夹,在其中创建mod.rs
和context.rs
,我们上述的结构体就在context.rs
里被描述.
cd os/src
mkdir trap
cd trap
touch mod.rs
touch context.rs
这时候还需要实现一个把这个结构体的数据压入内核栈的函数,要为内核栈实现一个方法:
impl KernelStack {
fn get_sp(&self) -> usize {
self.data.as_ptr() as usize + KERNEL_STACK_SIZE
}
pub fn push_context(&self, cx: TrapContext) -> &'static mut TrapContext {
let cx_ptr = (self.get_sp() - core::mem::size_of::<TrapContext>()) as *mut TrapContext;
unsafe {
*cx_ptr = cx;
}
unsafe { cx_ptr.as_mut().unwrap() }
}
}
可以看到push_context
方法是直接获取了一个栈顶指针(实际上是数组的底),然后通过TrapContext
的大小计算出栈底指针,然后把数据直接放到指针指向的位置.
随后返回栈底位置(保存的数据的指针位置)的 可变引用 .
这里使用 unwrap()
方法来处理可能的 None
情况.
特权级切换的核心是对Trap的管理。这主要涉及到如下一些内容:
ecall
进入到内核状态时,操作系统保存被打断的应用程序的 Trap 上下文;sret
让应用程序继续执行。注意上述提到的第二点,操作系统需要Trap相关的CSR寄存器内容,完成系统调用服务的分发与处理.
想到stvec
寄存器的作用,它控制 Trap 处理代码的入口地址.那么为了具体实现 系统调用服务的分发与处理 .需要配置stvec
的内容,把它设置为Trap处理入口点.
编辑os/src/trap/mod.rs
:
// os/src/trap/mod.rs
global_asm!(include_str!("trap.S"));
pub fn init() {
extern "C" { fn __alltraps(); }
unsafe {
stvec::write(__alltraps as usize, TrapMode::Direct);
}
}
这里可以看到这段代码利用global_asm!
宏引入trap.S
,然后通过extern
的方式引入__alltraps
这个label
,然后使用stvec::write
给stvec
写入__alltraps
作为入口,模式为Direct
,都是和上边讲的知识是对应的.
在 RV64 中, stvec
是一个 64 位的 CSR,在中断使能的情况下,保存了中断处理的入口地址。它有两个字段:
- MODE 位于 [1:0],长度为 2 bits;
- BASE 位于 [63:2],长度为 62 bits。
接下来解析trap.S
的内容:
# os/src/trap/trap.S
.macro SAVE_GP n
sd x\n, \n*8(sp)
.endm
.align 2
__alltraps:
csrrw sp, sscratch, sp
# now sp->kernel stack, sscratch->user stack
# allocate a TrapContext on kernel stack
addi sp, sp, -34*8
# save general-purpose registers
sd x1, 1*8(sp)
# skip sp(x2), we will save it later
sd x3, 3*8(sp)
# skip tp(x4), application does not use it
# save x5~x31
.set n, 5
.rept 27
SAVE_GP %n
.set n, n+1
.endr
# we can use t0/t1/t2 freely, because they were saved on kernel stack
csrr t0, sstatus
csrr t1, sepc
sd t0, 32*8(sp)
sd t1, 33*8(sp)
# read user stack from sscratch and save it on the kernel stack
csrr t2, sscratch
sd t2, 2*8(sp)
# set input argument of trap_handler(cx: &mut TrapContext)
mv a0, sp
call trap_handler
这里有个tip
,就是这些csr
开头的意味着是对CSR寄存器的 原子操作命令 ,这样后边就容易看懂了,比如r
就是读取rw
就是读写,嘻嘻.
首先是定义了一个宏SAVE_GP
:
.macro SAVE_GP n
sd x\n, \n*8(sp)
.endm
这个n
是传进去的宏参数,展开SAVE_GP 5
为sd x5, 5*8(sp)
,这样的话对于每个寄存器的编号都有一个栈上的位置专门储存.
然后是.align 2
是将__alltraps
的地址4字节对齐.这是RISC-V特权级规范的要求.
第 9 行的 csrrw
原型是 csrrw rd, csr, rs
可以将CSR
当前的值读到通用寄存器rd
中,然后将通用寄存器rs
的值写入该CSR
.因此这里起到的是交换sscratch
和sp
的效果.在这一行之前sp
指向用户栈,sscratch
指向内核栈(原因稍后说明),现在sp
指向内核栈,sscratch
指向用户栈.
这里注意sscratch
寄存器位于 RISC-V 架构的特权模式中,是监督模式的一部分,它通常用于保存和恢复关键寄存器的值,特别是在异常处理和中断处理的过程中.因此我们可以猜测是有另外的操作在触发Trap的时候把内核栈的位置暂存在里边.那么考虑到是把sscratch
和sp
进行了交换,我们可以理解为进入S
模式操作内核栈的时候,把用户栈指针暂存在sscratch
,回到U
模式操作用户栈的时候再把内核栈指针暂存在ssratch
之中.
第 12 行,我们准备在内核栈上保存 Trap 上下文,于是预先分配 34×8 字节的栈帧,这里改动的是 sp,说明确实是在内核栈上.这里考虑TrapContext
的定义,那么它的大小为34
:
pub struct TrapContext {
pub x: [usize; 32],
pub sstatus: Sstatus,
pub sepc: usize,
}
第 13~24 行,保存 Trap 上下文的通用寄存器x0~x31
,跳过x0
和tp(x4)
,原因之前已经说明.我们在这里也不保存sp(x2)
,因为我们要基于它来找到每个寄存器应该被保存到的正确的位置.实际上,在栈帧分配之后,我们可用于保存Trap
上下文的地址区间为$[sp+8n,sp+8(n+1))$,按照TrapContext
结构体的内存布局,基于内核栈的位置(sp
所指地址)来从低地址到高地址分别按顺序放置x0~x31
这些通用寄存器,最后是sstatus
和sepc
.因此通用寄存器xn
应该被保存在地址区间$[sp+8n,sp+8(n+1))$.为了简化代码,x5~x31
这 27 个通用寄存器我们通过类似循环的.rept
每次使用SAVE_GP
宏来保存,其实质是相同的.注意我们需要在trap.S
开头加上.altmacro
才能正常使用.rept
命令.
第 25~28 行,我们将CSRsstatus
和sepc
的值分别读到寄存器t0
和t1
中然后保存到内核栈对应的位置上.指令 的功能就是将 CSR 的值读到寄存器 中.这里我们不用担心t0
和t1
被覆盖,因为它们刚刚已经被保存了.
第 30~31 行专门处理sp
的问题.首先将sscratch
的值读到寄存器t2
并保存到内核栈上,注意:sscratch
的值是进入Trap
之前的sp
的值,指向用户栈.而现在的sp
则指向内核栈.
第 33 行令a0←sp
,让寄存器a0
指向内核栈的栈指针也就是我们刚刚保存的 Trap 上下文的地址,这是由于我们接下来要调用 trap_handler
进行 Trap 处理,它的第一个参数 cx
由调用规范要从a0
中获取.而Trap 处理函数 trap_handler
需要 Trap 上下文的原因在于:它需要知道其中某些寄存器的值,比如在系统调用的时候应用程序传过来的syscall ID
和对应参数.我们不能直接使用这些寄存器现在的值,因为它们可能已经被修改了,因此要去内核栈上找已经被保存下来的值.
这里这个 a0
的描述 是非常重要的,这可以让我么之打破a0
是作为调用函数默认的参数.
这里我们可以绘制出这一段的示意图:
我们可以看到这里它调用了trap_handler
函数来做Trap 的处理,但是这里 先不去管它的实现 ,继续看trap.S
的内容.
那么再接下来的内容就是trap_hander
函数执行完毕之后的操作,结合我们之前对于sscratch
的描述和:
操作系统完成系统调用服务后,需要恢复被打断的应用程序的Trap 上下文,并通 sret
让应用程序继续执行。
我们可以知道接下来的步骤应该是恢复sp
指针的位置和恢复x0~x31
寄存器的值,并且通过sepc
的值来明确Trap
发生之前执行的最后一条指令的地址.
那么我们接着看trap.S
的下一步:
# os/src/trap/trap.S
.macro LOAD_GP n
ld x\n, \n*8(sp)
.endm
__restore:
# case1: start running app by __restore
# case2: back to U after handling trap
mv sp, a0
# now sp->kernel stack(after allocated), sscratch->user stack
# restore sstatus/sepc
ld t0, 32*8(sp)
ld t1, 33*8(sp)
ld t2, 2*8(sp)
csrw sstatus, t0
csrw sepc, t1
csrw sscratch, t2
# restore general-purpuse registers except sp/tp
ld x1, 1*8(sp)
ld x3, 3*8(sp)
.set n, 5
.rept 27
LOAD_GP %n
.set n, n+1
.endr
# release TrapContext on kernel stack
addi sp, sp, 34*8
# now sp->kernel stack, sscratch->user stack
csrrw sp, sscratch, sp
sret
首先我们还是看到它定义了一个宏LOAD_GP
:
.macro LOAD_GP n
ld x\n, \n*8(sp)
.endm
和sd
指令相反ld
指令是把sp
指向的栈里的数据重新加载回xn
寄存器.
第10行,可以看到是把a0
的值重新保回sp
,对应__alltraps
中把sp
的指针拿回来,不要理会官方文档那个"第 10 行比较奇怪我们暂且不管,假设它从未发生,那么 sp 仍然指向内核栈的栈顶。"作者应该是昏了头,后边我会去提issue的.
第 13~26 行负责从内核栈顶的 Trap 上下文恢复通用寄存器和 CSR 。注意我们要先恢复 CSR 再恢复通用寄存器,这样我们使用的三个临时寄存器才能被正确恢复。
在第 28 行之前,sp 指向保存了 Trap 上下文之后的内核栈栈顶, sscratch 指向用户栈栈顶。我们在第 28 行在内核栈上回收 Trap 上下文所占用的内存,回归进入 Trap 之前的内核栈栈顶。第 30 行,再次交换 sscratch 和 sp,现在 sp 重新指向用户栈栈顶,sscratch 也依然保存进入 Trap 之前的状态并指向内核栈栈顶。
在应用程序控制流状态被还原之后,第 31 行我们使用 sret
指令回到 U 特权级继续运行应用程序控制流。
流程基本是把__alltraps
走了一遍,这里注意 sp
指针再次被偏移回栈顶,然后和sscratch
交换 .
他这个官方文档一直到这个位置才讲清楚sscratch
的用处,唉,太看天赋了他这个文档.
sscratch CSR 的用途
在特权级切换的时候,我们需要将 Trap 上下文保存在内核栈上,因此需要一个寄存器暂存内核栈地址,并以它作为基地址指针来依次保存 Trap 上下文的内容。但是所有的通用寄存器都不能够用作基地址指针,因为它们都需要被保存,如果覆盖掉它们,就会影响后续应用控制流的执行。
事实上我们缺少了一个重要的中转寄存器,而 sscratch
CSR 正是为此而生。从上面的汇编代码中可以看出,在保存 Trap 上下文的时候,它起到了两个作用:首先是保存了内核栈的地址,其次它可作为一个中转站让 sp
(目前指向的用户栈的地址)的值可以暂时保存在 sscratch
。这样仅需一条 csrrw sp, sscratch, sp
指令(交换对 sp
和 sscratch
两个寄存器内容)就完成了从用户栈到内核栈的切换,这是一种极其精巧的实现。
那么还记得我们没用实现trap_handler
吗?那么这一步就是要在这里完成.
在os/src/trap/mod.rs
实现 trap_handler
函数,在该函数中完成分发和处理P:
// os/src/trap/mod.rs
#[no_mangle]
pub fn trap_handler(cx: &mut TrapContext) -> &mut TrapContext {
let scause = scause::read();
let stval = stval::read();
match scause.cause() {
Trap::Exception(Exception::UserEnvCall) => {
cx.sepc += 4;
cx.x[10] = syscall(cx.x[17], [cx.x[10], cx.x[11], cx.x[12]]) as usize;
}
Trap::Exception(Exception::StoreFault) |
Trap::Exception(Exception::StorePageFault) => {
println!("[kernel] PageFault in application, kernel killed it.");
run_next_app();
}
Trap::Exception(Exception::IllegalInstruction) => {
println!("[kernel] IllegalInstruction in application, kernel killed it.");
run_next_app();
}
_ => {
panic!("Unsupported trap {:?}, stval = {:#x}!", scause.cause(), stval);
}
}
cx
}
这里主要需要关心的就是这一段代码:
Trap::Exception(Exception::UserEnvCall) => {
cx.sepc += 4;
cx.x[10] = syscall(cx.x[17], [cx.x[10], cx.x[11], cx.x[12]]) as usize;
}
第 8~11 行,发现触发 Trap 的原因是来自 U 特权级的 Environment Call,也就是系统调用。这里我们首先修改保存在内核栈上的 Trap 上下文里面 sepc,让其增加 4。这是因为我们知道这是一个由 ecall
指令触发的系统调用,在进入 Trap 的时候,硬件会将 sepc 设置为这条 ecall
指令所在的地址(因为它是进入 Trap 之前最后一条执行的指令)。而在 Trap 返回之后,我们希望应用程序控制流从 ecall
的下一条指令开始执行。因此我们只需修改 Trap 上下文里面的 sepc,让它增加 ecall
指令的码长,也即 4 字节。这样在 __restore
的时候 sepc 在恢复之后就会指向 ecall
的下一条指令,并在 sret
之后从那里开始执行。
回想我们之前实现的syscall
:
// user/src/syscall.rs
use core::arch::asm;
fn syscall(id: usize, args: [usize; 3]) -> isize {
let mut ret: isize;
unsafe {
asm!(
"ecall",
inlateout("x10") args[0] => ret,
in("x11") args[1],
in("x12") args[2],
in("x17") id
);
}
ret
}
这里要提到的重点就是x10
实际上是a0
,同时作为函数的第一个参数和输出,同样的x11
对应a1
,作为函数的第二个参数,x12
对应a3
函数的第三个寄存器.可见三个寄存器的别名是a0-2
,是非常合理的,因为a
对应arg
,参数嘛.
另外,要理解这里调用了还没有具体实现的run_next_app
以及容易忽略掉的一点,就是如果遇到了这些case
以外的问题,那么 操作系统 也应该停止运行,而不是 运行下一个app ,所以是调用了panic!
宏来处理.
对于系统调用而言, syscall
函数并不会实际处理系统调用,而只是根据 syscall ID 分发到具体的处理函数:
// os/src/syscall/mod.rs
pub fn syscall(syscall_id: usize, args: [usize; 3]) -> isize {
match syscall_id {
SYSCALL_WRITE => sys_write(args[0], args[1] as *const u8, args[2]),
SYSCALL_EXIT => sys_exit(args[0] as i32),
_ => panic!("Unsupported syscall_id: {}", syscall_id),
}
}
这里我们的思维必须 暂停一下 ,想一想是怎么回事才会触发这个Trap,触发Trap之后都发生了什么,这样才能理解为什么用户态有一个syscall
,内核态还有一个跟着的syscall
.
想一想:
syscall
ecall
,把参数存进了x10
,x11
,x12
,x17
__alltraps
trap_handler
来处理Traptrap_handler
之中调用内核态的syscall
,处理保存在内核栈中的x10
,x11
,x12
,x17
syscall
根据x17
的情况调用内核的函数所以其实没用什么魔法可言,从用户态到内核态之后,相当于是使用x10
,x11
,x12
,x17
作为桥梁,根据x17
约定好的函数编号来进行执行,只不过当前的特权级变了,可以执行一些指令了而已.
所以在硬件层面,在mstatus
和sstatus
中分别为M
特权级和S
特权级提供了确定当前特权级的位,而对于U
特权级则只能尝试执行一些不允许的指令看看会不会发生异常.
说回到这个函数,它根据我们传入的id
判断当前是要执行哪个函数.这里的两个函数都在os/src/syscall/fs.rs
里有实现:
// os/src/syscall/fs.rs
const FD_STDOUT: usize = 1;
pub fn sys_write(fd: usize, buf: *const u8, len: usize) -> isize {
match fd {
FD_STDOUT => {
let slice = unsafe { core::slice::from_raw_parts(buf, len) };
let str = core::str::from_utf8(slice).unwrap();
print!("{}", str);
len as isize
},
_ => {
panic!("Unsupported fd in sys_write!");
}
}
}
// os/src/syscall/process.rs
pub fn sys_exit(xstate: i32) -> ! {
println!("[kernel] Application exited with code {}", xstate);
run_next_app()
}
当批处理操作系统初始化完成,或者是某个应用程序运行结束或出错的时候,我们要调用 run_next_app
函数切换到下一个应用程序.
刚刚提到的trap_handler
里也针对两种Expectation
调用了run_next_app
.
这里需要考虑的问题就是:此时 CPU 运行在 S 特权级,而它希望能够切换到 U 特权级.
在 RISC-V 架构中,唯一一种能够使得 CPU 特权级下降的方法就是执行 Trap 返回的特权指令,如 sret
,mret
等.事实上,在从操作系统内核返回到运行应用程序之前,要完成如下这些工作:
__restore
函数,从刚构造的 Trap 上下文中,恢复应用程序执行的部分寄存器;sepc
CSR的内容为应用程序入口点 0x80400000
;scratch
和 sp
寄存器,设置 sp
指向应用程序用户栈;sret
从 S 特权级切换到 U 特权级。这里官方的架构设计就非常巧妙:
它们可以通过复用 __restore
的代码来更容易的实现上述工作。我们只需要在内核栈上压入一个为启动应用程序而特殊构造的 Trap 上下文,再通过 __restore
函数,就能让这些寄存器到达启动应用程序所需要的上下文状态。
// os/src/trap/context.rs
impl TrapContext {
pub fn set_sp(&mut self, sp: usize) { self.x[2] = sp; }
pub fn app_init_context(entry: usize, sp: usize) -> Self {
let mut sstatus = sstatus::read();
sstatus.set_spp(SPP::User);
let mut cx = Self {
x: [0; 32],
sstatus,
sepc: entry,
};
cx.set_sp(sp);
cx
}
}
为 TrapContext
实现 app_init_context
方法,修改其中的 sepc 寄存器为应用程序入口点 entry
, sp 寄存器为我们设定的一个栈指针,并将 sstatus 寄存器的 SPP
字段设置为 User 。
那么可以这样实现run_next_app
:
// os/src/batch.rs
pub fn run_next_app() -> ! {
let mut app_manager = APP_MANAGER.exclusive_access();
let current_app = app_manager.get_current_app();
unsafe {
app_manager.load_app(current_app);
}
app_manager.move_to_next_app();
drop(app_manager);
// before this we have to drop local variables related to resources manually
// and release the resources
extern "C" { fn __restore(cx_addr: usize); }
unsafe {
__restore(KERNEL_STACK.push_context(
TrapContext::app_init_context(APP_BASE_ADDRESS, USER_STACK.get_sp())
) as *const _ as usize);
}
panic!("Unreachable in batch::run_current_app!");
}
在高亮行所做的事情是在内核栈上压入一个 Trap 上下文,其 sepc
是应用程序入口地址 0x80400000
,其 sp
寄存器指向用户栈,其 sstatus
的 SPP
字段被设置为 User 。push_context
的返回值是内核栈压入 Trap 上下文之后的栈顶,它会被作为 __restore
的参数(回看 __restore
代码 ,这时我们可以理解为何 __restore
函数的起始部分会完成 sp←a0 ),这使得在 __restore
函数中 sp
仍然可以指向内核栈的栈顶。这之后,就和执行一次普通的 __restore
函数调用一样了。
在程序启动时,和实验一一样,sp指向了boot_stack
,那么那里就是入口函数load_all
所用的栈。然后load_all
调用run_next_app
,后者调用app_init_context
,这里对TrapContext
的操作修改的都是内核栈的栈底,把USER_TOP
传给了TrapContext
里的sp寄存器,并返回了TrapContext
的指针。
然后进入restore,第一句mv sp, a0
,将TrapContext
的指针传给了sp,这一步就相当于重置了内核栈,把内核栈重置为栈底只有一个TrapContext
的状态,同时此处也将程序当前的栈从boot_stack
转到内核栈了。然后各条指令都是在处理内核栈里的那一个TrapContext
。之后csrw sscratch, t2
将刚才传进x[2]的用户栈栈底传给sscratch寄存器,最后一句csrrw sp, sscratch, sp
,sscratch被设置为了内核栈底,sp也指向了用户栈底。