首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

提高 C# 的生产力:C# 13 更新完全指南

编程知识
2024年07月27日 00:16

前言

预计在 2024 年 11 月,C# 13 将与 .NET 9 一起正式发布。今年的 C# 更新主要集中在 ref struct 上进行了许多改进,并添加了许多有助于进一步提高生产力的便利功能。

本文将介绍预计将在 C# 13 中添加的功能。

注意:目前 C# 13 还未正式发布,因此以下内容可能会发生变化。

在迭代器和异步方法中使用 refref struct

在使用 C# 进行编程时,你是否经常使用 ref 变量和 Spanref struct 类型?然而,这些不能在迭代器和异步方法中使用,于是必须使用局部函数等来避免在迭代器和异步方法中直接使用 ref 变量 ref struct 类型,这非常不方便。

这个缺点在 C# 13 中得到了改善,现在迭代器和异步方法也可以使用 refref struct 了!

在迭代器中使用 refref struct 的例子:

IEnumerable<float> GetFloatNumberFromIntArray(int[] array)
{
    for (int i = 0; i < array.Length; i++)
    {
        Span<int> span = array.AsSpan();
        // 进行一些处理...
        ref float v = ref Unsafe.As<int, float>(ref array[i]);
        yield return v;
    }
}

在异步方法中使用 ref struct 的例子:

async Task ProcessDataAsync(int[] array)
{
    Span<int> span = array.AsSpan();
    // 进行一些处理...
    ref int element = ref span[42];
    element++;
    await Task.Yield();
}

为了展示功能,我使用了不适当且含糊不清的“一些处理”,不过重要的是现在可以使用 refref struct 了!

但是,有一点需要注意,ref 变量和 ref struct 类型的变量不能超出 yieldawait 的边界使用。例如,以下示例将导致编译错误。

async Task ProcessDataAsync(int[] array)
{
    Span<int> span = array.AsSpan();
    // 进行一些处理...
    ref int element = ref span[42];
    element++;
    await Task.Yield();
    element++; // 错误:对 element 的访问超出了 await 的边界
}

虽然我们已经说到这里,但我想可能有人会疑惑,到底 refref struct 是什么,所以我稍微解释一下。

在 C# 中,可以使用 ref 来获取变量的引用。这样,就可以通过引用来更改原始变量。以下是一个例子:

void Swap(ref int a, ref int b) // ref 表示引用
{
    int temp = a;
    a = b;
    b = temp; // 到这里,a 和 b 已经交换了
}

int x = 1;
int y = 2;
Swap(ref x, ref y); // 获取 x 和 y 的引用,调用 Swap 来交换 x 和 y

另一方面,ref struct 是用于定义只能存在于堆栈上的值类型的。这是为了避免垃圾收集的开销。然而,由于 ref struct 只能存在于堆栈上,所以在 C# 13 之前,它不能在迭代器和异步方法等地方使用。

顺便一提,ref struct 之所以带有 ref,是因为 ref struct 的实例只能存在于堆栈上,其遵循的生命周期规则与 ref 变量相同。

allows ref struct 泛型约束

在以前,ref struct 不能作为泛型类型参数使用,因此,考虑到代码的可重用性,引入了泛型,但最终 ref struct 不能使用,必须为 SpanReadOnlySpan 重新编写相同的处理,于是就很麻烦。

在 C# 13 中,泛型类型也可以使用 ref struct 了:

using System;
using System.Numerics;

Process([1, 2, 3, 4], Sum); // 10
Process([1, 2, 3, 4], Multiply); // 24

T Process<T>(ReadOnlySpan<T> span, Func<ReadOnlySpan<T>, T> method)
{
    return method(span);
}

T Sum<T>(ReadOnlySpan<T> span) where T : INumberBase<T>
{
    T result = T.Zero;
    foreach (T value in span)
    {
        result += value;
    }
    return result;
}

T Multiply<T>(ReadOnlySpan<T> span) where T : INumberBase<T>
{
    T result = T.One;
    foreach (T value in span)
    {
        result *= value;
    }
    return result;
}

为什么像 ReadOnlySpan<T> 这样的 ref struct 类型可以作为 Func 的类型参数呢?为了调查这个问题,我查看了 .NET 的 源代码,发现 Func 类型的泛型参数是这样定义的:

public delegate TResult Func<in T, out TResult>(T arg)
    where T : allows ref struct
    where TResult : allows ref struct;

如果在泛型参数上添加 allow ref struct 约束,那么就可以将 ref struct 类型传递给该参数。

这确实是一个方便的功能。

ref struct 也可以实现接口

在 C# 13 中,ref struct 可以实现接口。

如果将此功能与 allows ref struct 结合使用,那么也可以通过泛型类型传递引用:

using System;
using System.Numerics;

int a = 10;
// 使用 Ref<int> 保存 a 的引用
Ref<int> aRef = new Ref<int>(ref a);
// 传递 Ref<int>
Increase<Ref<int>, int>(aRef);
Console.WriteLine(a); // 11

void Increase<T, U>(T data) where T : IRef<U>, allows ref struct where U : INumberBase<U>
{
    ref U value = ref data.GetRef();
    value++;
}

interface IRef<T>
{
    ref T GetRef();
}

// 为 Ref<T> 这样的 ref struct 实现接口
ref struct Ref<T> : IRef<T>
{
    private ref T _value;

    public Ref(ref T value)
    {
        _value = ref value;
    }

    public ref T GetRef()
    {
        return ref _value;
    }
}

这样一来,编写 ref struct 相关的代码就变得更容易了。另外,也能给各种 ref struct 实现的枚举器实现 IEnumerator 之类的接口了。

集合类型和 Span 也可以使用 params

在以前,params 只能用于数组类型,但从 C# 13 开始,它也可以用于其他集合类型和 Span

params 是一种功能,允许在调用方法时直接指定任意数量的参数。

例如,

Test(1, 2, 3, 4, 5, 6);
void Test(params int[] values) { }

如上所示,可以直接指定任意数量的 int 参数。

从 C# 13 开始,除了数组类型外,其他集合类型、SpanReadOnlySpan 类型以及与集合相关的接口也可以添加 params

Test(1, 2, 3, 4, 5, 6);
void Test(params ReadOnlySpan<int> values) { }

// 或者
Test(1, 2, 3, 4, 5, 6);
void Test(params List<int> values) { }

// 接口也可以
Test(1, 2, 3, 4, 5, 6);
void Test(params IEnumerable<int> values) { }

这也很方便!

field 关键字

在实现 C# 的属性时,经常需要定义一大堆字段,如下所示...

partial class ViewModel : INotifyPropertyChanged
{
    // 定义字段
    private int _myProperty;

    public int MyProperty
    {
        get => _myProperty;
        set
        {
            if (_myProperty != value)
            {
                _myProperty = value;
                OnPropertyChanged();
            }
        }
    }
}

因此,从 C# 13 开始,field 关键字将派上用场!

partial class ViewModel : INotifyPropertyChanged
{
    public int MyProperty
    {
        // 只需使用 field
        get => field;
        set
        {
            if (field != value)
            {
                field = value;
                OnPropertyChanged();
            }
        }
    }
}

不再需要自己定义字段,只需使用 field 关键字,字段就会自动生成。

这也非常方便!

部分属性

在编写 C# 时,常见的问题之一是:属性不能添加 partial 修饰符。

在 C# 中,可以在类或方法上添加 partial,以便分别进行声明和实现。此外,还可以分散类的各个部分。它的主要用途是在使用源代码生成器等自动生成工具时,指定要生成的内容。

例如:

partial class ViewModel
{
    // 这里只声明方法,实现部分由工具自动生成
    partial void OnPropertyChanged(string propertyName);
}

然后自动生成工具会生成以下代码:

partial class ViewModel : INotifyPropertyChanged
{
    public event PropertyChangedEventHandler? PropertyChanged;

    partial void OnPropertyChanged(string propertyName)
    {
        PropertyChanged?.Invoke(this, new(propertyName));
    }
}

开发者只需要声明 OnPropertyChanged,其实现将全部由自动生成,从而节省了开发者的时间。

从 C# 13 开始,属性也支持 partial

partial class ViewModel
{
    // 声明部分属性
    public partial int MyProperty { get; set; }
}

partial class ViewModel
{
    // 部分属性的实现
    public partial int MyProperty
    {
        get
        {
            // ...
        }
        set
        {
            // ...
        }
    }
}

这样,属性也可以由工具自动生成了。

锁对象

众所周知,lock 是一种功能,通过监视器用于线程同步。

object lockObject = new object();
lock (lockObject)
{
    // 关键区
}

但是,这个功能的开销其实很大,会影响性能。

为了解决这个问题,C# 13 实现了锁对象。要使用此功能,只需用 System.Threading.Lock 替换被锁定的对象即可:

using System.Threading;

Lock lockObject = new Lock();
lock (lockObject)
{
    // 关键区
}

这样就可以轻松提高性能了。

初始化器中的尾部索引

索引运算符 ^ 可用于表示集合末尾的相对位置。从 C# 13 开始,初始化器也支持此功能:

var x = new Numbers
{
    Values = 
    {
        [1] = 111,
        [^1] = 999 // ^1 是从末尾开始的第一个元素
    }
    // x.Values[1] 是 111
    // x.Values[9] 是 999,因为 Values[9] 是最后一个元素
};

class Numbers
{
    public int[] Values { get; set; } = new int[10];
}

转义字符

在 Unicode 字符串中,可以使用 \e 代替 \u001b\x1b\u001b\x1b\e 都表示转义字符。它们通常用于表示控制字符。

  • \u001b 表示 Unicode 转义序列,\u 后面的 4 位十六进制数表示 Unicode 代码点
  • \x1b 表示十六进制转义序列,\x 后面的 2 位十六进制数表示 ASCII 代码
  • \e 表示转义字符本身

推荐使用 \e 的原因是,可以避免在十六进制中的混淆。

例如,如果 \x1b 后面跟着 3,则变为 \x1b3,由于 \x1b3 之间没有明确的分隔,因此不清楚应该分别解释成 \x1b3,还是放在一起解释。

如果使用 \e,则可以避免混淆。

其他

除了上述功能外,方法组中的自然类型和方法重载中的优先级也有一些改进,但在本文中省略。如果想了解更多信息,请参阅文档。

结语

C# 正在年复一年地进化,对我来说 C# 13 的更新中实现了许多非常实用且方便的功能,解决了不少实际的痛点。期待 .NET 9 和 C# 13 的正式发布~

From:https://www.cnblogs.com/hez2010/p/18326521/whats-new-in-csharp-13
本文地址: http://shuzixingkong.net/article/470
0评论
提交 加载更多评论
其他文章 通过Jupyter Notebook+OpenAI+ollama简单的调用本地模型
通过Jupyter Notebook+OpenAI+ollama简单的调用本地模型 起因是收到了ollama的邮件,貌似支持使用openai来调用本地的ollama下载的模型为自己用 想了下正好试下,因为这几天正好在尝试用Jupyter Notebook来写点调用api的方式来使用大语言模型,看看后
通过Jupyter Notebook+OpenAI+ollama简单的调用本地模型 通过Jupyter Notebook+OpenAI+ollama简单的调用本地模型 通过Jupyter Notebook+OpenAI+ollama简单的调用本地模型
Asp .Net Core 系列:详解授权以及实现角色、策略、自定义三种授权和自定义响应
什么是授权(Authorization)? 在 ASP.NET Core 中,授权(Authorization)是控制对应用资源的访问的过程。它决定了哪些用户或用户组可以访问特定的资源或执行特定的操作。授权通常与身份验证(Authentication)一起使用,身份验证是验证用户身份的过程,授权与身
Asp .Net Core 系列:详解授权以及实现角色、策略、自定义三种授权和自定义响应
后端说,单页面SPA和前端路由是怎么回事
没有请求的路由 在传统开发中,浏览器点击一个超链接,就会像后端web服务器发送一个html文档请求,然后页面刷新。但开始单页面开发后,就完全不同了。 单页面?这个概念难以理解。我用一个js作为整个web应用,然后再这个js中操作dom变化,以此来实现页面变化。这不叫单页面吗?这叫!但不完善,因为这种
后端说,单页面SPA和前端路由是怎么回事
矩阵的奇异值分解(SVD)及其应用
该博客针对矩阵的奇异值分解(SVD)展开介绍,主要介绍了奇异值分解的计算及其几何意义,并基于C++编程语言举例说明了SVD分解的一些应用。
矩阵的奇异值分解(SVD)及其应用 矩阵的奇异值分解(SVD)及其应用 矩阵的奇异值分解(SVD)及其应用
浅谈 I/O 与 I/O 多路复用
1.基础知识 网络编程里常听到阻塞IO、非阻塞IO、同步IO、异步IO等概念,总听别人聊不如自己下来钻研一下。不过,搞清楚这些概念之前,还得先回顾一些基础的概念。 下面说的都是Linux环境下,跟Windows环境不一样哈&#183;☺。 1.1 用户空间和内核空间 现在操作系统都采用虚拟寻址,处理
浅谈 I/O 与 I/O 多路复用 浅谈 I/O 与 I/O 多路复用 浅谈 I/O 与 I/O 多路复用
解锁 SQL Server 2022的时间序列数据功能
解锁 SQL Server 2022的时间序列数据功能 SQL Server2022在处理时间序列数据时,SQL Server 提供了一些优化和功能,比如 DATE_BUCKET 函数、窗口函数(如 FIRST_VALUE 和 LAST_VALUE)以及其他时间日期函数,以便更高效地处理时间序列数据
解锁 SQL Server 2022的时间序列数据功能 解锁 SQL Server 2022的时间序列数据功能 解锁 SQL Server 2022的时间序列数据功能
Django模型中的save方法 精讲
两种方法定义在Django模型中的save方法有不同的参数处理方式。 第一种方法: def save(self, *args, **kwargs): super().save(*args, **kwargs) 特点: 使用*args和**kwargs来捕获所有位置参数和关键字参数。 这样的方法可以灵
STM32开发环境配置记录——关于PlatformIO + VSCode + CubeMX的集成环境配置
前言 ​ 为什么配置这样的一个环境呢?鄙人受够了Keil5那个简陋的工作环境了,实在是用不下去,调试上很容易跟CubeMX的代码产生不协调导致调试——发布代码不一致造成的一系列问题。CubeIDE虽说不错,但是它的代码辅助功能和构建系统实在不敢恭维,经常出现Makefile未同步导致符号定义冲突,亦
STM32开发环境配置记录——关于PlatformIO + VSCode + CubeMX的集成环境配置 STM32开发环境配置记录——关于PlatformIO + VSCode + CubeMX的集成环境配置 STM32开发环境配置记录——关于PlatformIO + VSCode + CubeMX的集成环境配置