所谓的一致性问题是指,在同时使用缓存和数据库的情况下,要确保数据在缓存与数据库中的更新操作保持同步。也就是当对数据进行修改时,无论是先修改缓存还是先修改数据库,最终都要保证两者的数据是一样的,不会出现数据不一样的问题。
缓存和数据库一致性的经典解决方案有以下两个:
需要注意的是,无论使用的是延迟双删还是 Canal,都会出现短暂数据不一致性的问题,但可以保证最终的数据一致性。
然而,如果使用的是延迟双删 + MQ 的这种方式的时候,有一个棘手的问题很难处理,那就是如何设置延迟时间?
如果延迟时间设置的比较短,那么在并发场景下会出现数据不一致的问题;如果延迟时间设置的比较长,那么在比较长的这段时间内还会有数据不一致的问题。这个问题归根到底的原因是,并发线程的调度时间不能人为的控制(由操作系统统一调度)。
所以基于以上原因,使用 Canal 来保证数据一致性问题变成了一个比较不错的解决 Redis 和 MySQL 数据一致性的有效手段。
通过 Canal 保证数据一致性的实现流程如下图所示:
使用 Canal 读取 MySQL 的 Binlog 配置步骤如下:
Kafka 中存储的数据格式如下:
理论如同明灯照亮前行的道路,实践则是我们坚实的脚步。唯有将两者紧密结合,不断地练习和实践,我们才能在求知的旅程中稳步前行,收获真正的成长与进步。所以,一起行动起来,光看不练都是假把式。
本文已收录到我的面试小站 www.javacn.site,其中包含的内容有:Redis、JVM、并发、并发、MySQL、Spring、Spring MVC、Spring Boot、Spring Cloud、MyBatis、设计模式、消息队列等模块。