首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

Redis系列补充:聊聊布隆过滤器(go语言实践篇)

编程知识
2024年09月24日 07:00

Redis24篇集合

1 介绍

布隆过滤器(Bloom Filter)是 Redis 4.0 版本之后提供的新功能,我们一般将它当做插件加载到 Redis Service服务器中,给 Redis 提供强大的滤重功能。

它是一种概率性数据结构,可用于判断一个元素是否存在于一个集合中。相比较之 Set 集合的去重功能,布隆过滤器空间上能节省 90% +,不足之处是去重率大约在 99% 左右,那就是有 1% 左右的误判率,这种误差是由布隆过滤器的自身结构决定的。它有如下优缺点:

  • 优点:空间效率和查询时间都比一般的算法要好的多
  • 缺点:有一定的误识别率和删除困难

详细的原理可以参考笔者的这一篇《聊聊布隆过滤器(原理篇)》。

2 应用场景说明

我们在遇到数据量大的时候,为了去重并避免大批量的重复计算,可以考虑使用 Bloom Filter 进行过滤。
具体常用的经典场景如下:

  • 解决大流量下缓存穿透的问题,参考笔者这篇《一次缓存雪崩的灾难复盘》。
  • 过滤被屏蔽、拉黑、减少推荐的信息,一般你在浏览抖音或者百度App的时候,看到不喜欢的会设置减少推荐、屏蔽此类信息等,都可以采用这种原理设计。
  • 各种名单过滤,使用布隆过滤器实现第一层的白名单或者黑名单过滤,可用于各种AB场景。

下面以缓存穿透为解决目标进行案例介绍。

3 案例分析

布隆过滤器的一个经典应用场景就是解决缓存穿透问题!

缓存穿透是指访问一个不存在的key,缓存不起作用,请求会穿透到DB,流量井喷时会导致DB挂掉。

比如 我们查询用户的信息,程序会根据用户的编号去缓存中检索,如果找不到,再到数据库中搜索。如果你给了一个不存在的编号:XXXXXXXX,那么每次都比对不到,就透过缓存进入数据库。
这样风险很大,如果因为某些原因导致大量不存在的编号被查询,甚至被恶意伪造编号进行大规模攻击,那将是灾难。

解决方案质疑就是在缓存之前在加一层 BloomFilter :

  • 把存在的key记录在BloomFilter中,在查询的时候先去 BloomFilter 去查询 key 是否存在,如果不存在则说明数据库和缓存都没有,就直接返回,
  • 存在再走查缓存 ,投入数据库去查询,这样减轻了数据库的压力。

3.1 巨量查询场景

下面以火车票订购和查询为案例进行说明,如果火车票被恶意攻击,模拟了一样结构的火车票订单编号,那很可能通过大量的请求穿透过缓存层把数据库打雪崩了,所以使用布隆过滤器为服务提供一层保障。
具体的做法就是,我们在购买火车票成功的时候,把订单号的ID写入(异步或者消息队列的方式)到布隆过滤器中,保障后续的查询都在布隆过滤器中走一遍再进到缓存中去查询。

3.2 创建Bloom Filter

创建 Bloom Filter 的语法如下:

# BF.RESERVE {key} {error_rate} {capacity} [EXPANSION {expansion}] [NONSCALING]
BF.RESERVE ticket_orders 0.01 1000000

这边的命令是通过BF.RESERVE命令手动创建一个名字为 ticket_orders,错误率为 0.01 ,初始容量为 1000000 的布隆过滤器。
这边需要注意的一些点是:

  • error_rate 越小,对碰撞的容忍度越小,需要的存储空间就越大。如果允许一定比例的不准确,对精确度要求不高的场景,error_rate 可以设的稍大一点。
  • capacity 设置的过大,会浪费存储空间,设置过小,准确度不高。所以评估的时候需要精准一点,既要避免浪费空间也要保证准确比例。

原理不理解的请参考笔者的这一篇《聊聊布隆过滤器(原理篇)》。

3.3 创建车票订单

# BF.ADD {key}  {value ... }

# 添加单个订单号
BF.ADD ticket_orders 1725681193-350000
(integer) 1

# 添加多个订单号
BF.MADD ticket_orders 1725681193-350000 1725681197-270001 1725681350-510007
1) (integer) 1
2) (integer) 1
3) (integer) 1

以上的语句是将已经订好的车票订单号存储到Bloom Filter中,包括一次存储单个和一次存储多个。

火车票订单同步到 Bloom Filter 的步骤如下:
image

3.4 判断火车票订单Id是否存在

# BF.EXISTS {key} {value} ,存在的话返回 1,不存在返回 0
BF.EXISTS ticket_orders 1725681193-350000
(integer) 1

# 批量判断多个值是否存在于布隆过滤器,语句如下:
BF.MEXISTS ticket_orders 1725681193-350000 1725681197-270001 1725681350-510007
1) (integer) 0
2) (integer) 1
3) (integer) 0

BF.EXISTS 判断一个元素是否存在于 Bloom Filter中,返回值 = 1 表示存在,返回值 = 0 表示不存在。可以一次性判断单个元素,或者一次性判断多个元素。

image

综上,我们通过几个指令就能实现布隆过滤器的建设,避免缓存穿透的情况发生。
如果你要查询缓存信息,必须先到Bloom Filter中先跑一次,不存在的直接过滤掉,这样就不会因为无效的key把缓存打穿。

4 程序实现说明

可以在 Golang 中使用 go-redis/redis 库来封装布隆过滤器功能。
你需要先确保你的 Redis 服务器已经安装了 RedisBloom 模块,因为 Redis 本身并不直接支持布隆过滤器。一旦 RedisBloom 安装并配置好,你就可以在 Go 代码中通过 go-redis/redis 库来调用相关的 RedisBloom 命令。

package bloomfilter  
  
import (  
    "context"  
    "fmt"  
    "github.com/go-redis/redis/v8"  
)  
  
// BloomFilter 封装了与布隆过滤器相关的操作  
type BloomFilter struct {  
    rdb  *redis.Client  
    name string  
}  
  
// NewBloomFilter 创建一个新的布隆过滤器实例  
func NewBloomFilter(rdb *redis.Client, name string) *BloomFilter {  
    return &BloomFilter{  
        rdb:  rdb,  
        name: name,  
    }  
}  
  
// Add 将元素添加到布隆过滤器中  
func (bf *BloomFilter) Add(ctx context.Context, item string, capacity int64, errorRate float64) error {  
    // 注意:RedisBloom 的 BF.ADD 命令通常不需要显式设置容量和错误率,  
    // 因为这些是在创建布隆过滤器时设置的。这里我们简化为只添加元素。  
    // 如果需要动态调整这些参数,你可能需要重新创建布隆过滤器。  
    // 但为了示例,我们假设这些参数在创建布隆过滤器时已经设置好了。  
    _, err := bf.rdb.Do(ctx, "BF.ADD", bf.name, item).Result()  
    return err  
}  
  
// Exists 检查元素是否可能存在于布隆过滤器中  
func (bf *BloomFilter) Exists(ctx context.Context, item string) (bool, error) {  
    result, err := bf.rdb.Do(ctx, "BF.EXISTS", bf.name, item).Int()  
    if err != nil {  
        return false, err  
    }  
    // BF.EXISTS 返回 1 表示可能存在,0 表示一定不存在  
    return result == 1, nil  
}  
  
// 注意:在实际应用中,你可能还需要封装更多操作,比如删除布隆过滤器(虽然布隆过滤器通常不支持删除单个元素)  
// 或者调整布隆过滤器的容量和错误率(这通常意味着需要重新创建布隆过滤器)。  
  
func main() {  
    rdb := redis.NewClient(&redis.Options{  
        Addr:     "localhost:6379", // Redis 地址  
        Password: "",              // 密码(如果有的话)  
        DB:       0,               // 使用的数据库  
    })  
  
    bf := NewBloomFilter(rdb, "myBloomFilter")  
  
    ctx := context.Background()  
  
    // 添加元素  
    err := bf.Add(ctx, "item1", 100000, 0.01) // 注意:BF.ADD 命令通常不需要 capacity 和 errorRate  
    if err != nil {  
        panic(err)  
    }  
  
    // 检查元素是否存在  
    exists, err := bf.Exists(ctx, "item1")  
    if err != nil {  
        panic(err)  
    }  
    fmt.Println("Exists:", exists)  
  
    exists, err = bf.Exists(ctx, "item2")  
    if err != nil {  
        panic(err)  
    }  
    fmt.Println("Exists:", exists)  
}  
  
// 注意:上面的 Add 方法中的 capacity 和 errorRate 参数在 BF.ADD 命令中并不直接使用,  
// 因为 RedisBloom 的 BF.ADD 命令主要用于添加元素到已存在的布隆过滤器中。  
// 容量和错误率通常在创建布隆过滤器时通过 BF.RESERVE 命令设置。

重要提示

  • 在上面的代码中,Add 方法的 capacityerrorRate 参数并未直接用于 BF.ADD 命令,因为 BF.ADD 只是用于向已存在的布隆过滤器中添加元素。如果你需要设置布隆过滤器的容量和错误率,你应该在创建布隆过滤器时使用 BF.RESERVE 命令。
  • 布隆过滤器不支持传统意义上的“删除”操作,因为一旦一个位被设置为 1,它就不能再被设置为 0(除非重新创建布隆过滤器)。
  • 在实际部署之前,请确保你的 Redis 服务器已经安装了 RedisBloom 模块,并且 go-redis/redis 库与你的 Redis 服务器版本兼容。

5 总结

本篇介绍了布隆过滤器的几种实现场景。
并以火车票订单信息查询为案例进行说明,如何使用布隆过滤器避免缓存穿透,避免被恶意攻击。

From:https://www.cnblogs.com/wzh2010/p/18030915
本文地址: http://shuzixingkong.net/article/2248
0评论
提交
其他文章 java基础 -反射笔记
710,反射快速入门 代码: 先创建一个 re.properties 文件: classfullpath=com.hspedu.Cat method=hi Cat.java package com.hspedu; public class Cat { private String name = &q
java基础 -反射笔记 java基础 -反射笔记 java基础 -反射笔记
不是,哥们,谁教你这样处理生产问题的?
你好呀,我是歪歪。 最近遇到一个生产问题,我负责的一个服务触发了内存使用率预警,收到预警的时候我去看了内存使用率已经到了 80%,看了一眼 GC 又发现还没有触发 FullGC,一次都没有。 基于这个现象,当时推测有两种可能,一种是内存溢出,一种是内存泄漏。 好,假设现在是面试,面试官目前就给了这点
不是,哥们,谁教你这样处理生产问题的? 不是,哥们,谁教你这样处理生产问题的? 不是,哥们,谁教你这样处理生产问题的?
密码学承诺原理与应用 - 概览
作者:@warm3snow https://github.com/warm3snow 微信公众号:密码应用技术实战 博客园首页:https://www.cnblogs.com/informatics/ 标签:技术分享模板 目录简介承诺方案原理符号定义方案定义常见承诺方案和原理哈希承诺ElGamal承
密码学承诺原理与应用 - 概览 密码学承诺原理与应用 - 概览 密码学承诺原理与应用 - 概览
Python 项目配置管理框架技术选型
一、背景介绍 在实际生产项目中,不同环境(如开发、测试、生产环境)常有不同配置需求,如数据库链接等。我们期望一份代码无需改动,仅通过单一配置变量调整就能适配和使用多个环境,实现 “一份代码,多处部署”的需求,以提升系统部署灵活性及配置管理能力。具体而言,支持“多环境配置”的配置管理框架(类库)应支持
伯克利函数调用排行榜(BFCL)
自 2022 年底以来,大语言模型(LLMs)凭借其执行通用任务的强大能力,成为众人关注的焦点。不仅限于聊天应用,将这些模型应用于开发各类 AI 应用和软件(如 Langchain, Llama Index, AutoGPT, Voyager)已成为一种趋势。GPT, Gemini, Llama,
救园最后7天:「坚持你所相信的,相信你所坚持的」
从7月15日开始的救园还剩最后7天,很有希望,也很紧张,能否救园成功,取决于最后7天有多少园友出手相救。前二十年,我们选择了「坚持我们所相信的」,相信真心为开发者服务,一定会有出路,我们坚持了下来。在第二十年遇到最大难关时,我们选择了「相信我们所坚持的」
救园最后7天:「坚持你所相信的,相信你所坚持的」
一文夯实并发编程的理论基础
JMM内存模型 定义 java内存模型(即 java Memory Model,简称JMM),不存在的东西,是一个概念,约定 主要分成两部分来看,一部分叫做主内存,另一部分叫做工作内存。 java当中的共享变量;都放在主内存当中,如类的成员变量(实例变量),还有静态的成员变量(类变量),都是存储在主
一文夯实并发编程的理论基础 一文夯实并发编程的理论基础 一文夯实并发编程的理论基础
统计一个字符在字符串里出现的次数
统计一个字符在字符串里出现的次数 背景在数据库操作中,统计字符串中某个特定字符出现的次数是一个常见需求。无论是分析文本数据、格式化字符串,还是确保数据一致性,字符出现次数的统计对于开发人员和数据库管理员来说都是一项重要任务。这个问题看似简单,但可以通过数据库管理系统的内置函数高效解决,避免复杂的循环
统计一个字符在字符串里出现的次数