首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

一文搞定WeakHashMap

编程知识
2024年09月18日 20:24

写在前面

在缓存场景下,由于内存是有限的,不能缓存所有对象,因此就需要一定的删除机制,淘汰掉一些对象。这个时候可能很快就想到了各种Cache数据过期策略,目前也有一些优秀的包提供了功能丰富的Cache,比如Google的Guava Cache,它支持数据定期过期、LRU、LFU等策略,但它仍然有可能会导致有用的数据被淘汰,没用的数据迟迟不淘汰(如果策略使用得当的情况下这都是小概率事件)。

现在有种机制,可以让Cache里不用的key数据自动清理掉,用的还留着,不会出现误删除。而WeakHashMap 就适用于这种缓存的场景,因为它有自清理机制!

如果让你手动实现一种自清理的HashMap,可以怎么做?首先肯定是想办法先知道某个Key肯定没有在用了,然后清理掉HashMap中没有在用的对应的K-V。在JVM里一个对象没用了是指没有任何其他有用对象直接或者间接执行它,具体点就是在GC过程中它是GCRoots不可达的。而某个弱引用对象所指向的对象如果被判定为垃圾对象,Jvm会将该弱引用对象放到一个ReferenceQueue里,只需要看下这个Queue里的内容就知道某个对象还有没有用了。

WeakHashMap概述

从WeakHashMap名字也可以知道,这是一个弱引用的Map,当进行GC回收时,弱引用指向的对象会被GC回收。

WeakHashMap正是由于使用的是弱引用,因此它的对象可能被随时回收。更直观的说,当使用 WeakHashMap 时,即使没有显示的添加或删除任何元素,也可能发生如下情况:

  • 调用两次size()方法返回不同的值;

  • 两次调用isEmpty()方法,第一次返回false,第二次返回true;

  • 两次调用containsKey()方法,第一次返回true,第二次返回false,尽管两次使用的是同一个key;

  • 两次调用get()方法,第一次返回一个value,第二次返回null,尽管两次使用的是同一个对象。

从上图可以看出:

  1. WeakHashMap继承于AbstractMap,并且实现了Map接口。

  2. WeakHashMap是哈希表,但是它的键是"弱键"。WeakHashMap中保护几个重要的成员变量:table, size, threshold, loadFactor, modCount, queue。

    • table是一个Entry[]数组类型,而Entry实际上就是一个单向链表。哈希表的"key-value键值对"都是存储在Entry数组中的。

    • size是Hashtable的大小,它是Hashtable保存的键值对的数量。

    • threshold是Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值="容量*加载因子"。

    • loadFactor就是加载因子。

    • modCount是用来实现fail-fast机制的

    • queue保存的是“已被GC清除”的“弱引用的键”。

基本用法

WeakHashMap < String, String > weakHashMap = new WeakHashMap < > (10);

String key0 = new String("str1");
String key1 = new String("str2");
String key2 = new String("str3");

// 存放元素
weakHashMap.put(key0, "data1");
weakHashMap.put(key1, "data2");
weakHashMap.put(key2, "data3");
System.out.printf("weakHashMap: %s\n", weakHashMap);

// 是否包含某key
System.out.printf("contains key str1 : %s\n", weakHashMap.containsKey(key0));
System.out.printf("contains key str2 : %s\n", weakHashMap.containsKey(key1));

// 移除key
weakHashMap.remove(key0);
System.out.printf("weakHashMap after remove: %s\n", weakHashMap);

// 这意味着"弱键"key1再没有被其它对象引用,调用gc时会回收WeakHashMap中与key1对应的键值对
key1 = null;
// 内存回收,这里会回收WeakHashMap中与"key0"对应的键值对
System.gc();

try {
    Thread.sleep(100);
} catch (InterruptedException e) {
    e.printStackTrace();
}

// 遍历WeakHashMap
for (Map.Entry < String, String > m: weakHashMap.entrySet()) {
    System.out.printf("next : %s >>> %s\n", m.getKey(), m.getValue());
}
// 打印WeakHashMap的实际大小
System.out.printf("after gc WeakHashMap size: %s\n", weakHashMap.size());

底层源码

构造器

// 默认构造函数。
WeakHashMap()

// 指定“容量大小”的构造函数
WeakHashMap(int capacity)

// 指定“容量大小”和“加载因子”的构造函数
WeakHashMap(int capacity, float loadFactor)

// 包含“子Map”的构造函数
WeakHashMap(Map<? extends K, ? extends V> map)

从WeakHashMap的继承关系上来看,可知其继承AbstractMap,实现了Map接口。其底层数据结构是Entry数组,Entry的数据结构如下:

从源码上可知,Entry的内部并没有存储key的值,而是通过调用父类的构造方法,传入key和ReferenceQueue(这里与ThreadLocal类似),最终key和queue会关联到Reference中,这里是GC时,清除key的关键,这里大致看下Reference的源码:

private static class ReferenceHandler extends Thread {

    private static void ensureClassInitialized(Class <? > clazz) {
        try {
            Class.forName(clazz.getName(), true, clazz.getClassLoader());
        } catch (ClassNotFoundException e) {
            throw (Error) new NoClassDefFoundError(e.getMessage()).initCause(e);
        }
    }

    static {
        // pre-load and initialize InterruptedException and Cleaner classes
        // so that we don't get into trouble later in the run loop if there's
        // memory shortage while loading/initializing them lazily.
        ensureClassInitialized(InterruptedException.class);
        ensureClassInitialized(Cleaner.class);
    }

    ReferenceHandler(ThreadGroup g, String name) {
        super(g, name);
    }

    public void run() {
        // 注意这里为一个死循环
        while (true) {
            tryHandlePending(true);
        }
    }
}

static boolean tryHandlePending(boolean waitForNotify) {
    Reference < Object > r;
    Cleaner c;
    try {
        synchronized(lock) {
            if (pending != null) {
                r = pending;
                // 'instanceof' might throw OutOfMemoryError sometimes
                // so do this before un-linking 'r' from the 'pending' chain...
                c = r instanceof Cleaner ? (Cleaner) r : null;
                // unlink 'r' from 'pending' chain
                pending = r.discovered;
                r.discovered = null;
            } else {
                // The waiting on the lock may cause an OutOfMemoryError
                // because it may try to allocate exception objects.
                if (waitForNotify) {
                    lock.wait();
                }
                // retry if waited
                return waitForNotify;
            }
        }
    } catch (OutOfMemoryError x) {
        // Give other threads CPU time so they hopefully drop some live references
        // and GC reclaims some space.
        // Also prevent CPU intensive spinning in case 'r instanceof Cleaner' above
        // persistently throws OOME for some time...
        Thread.yield();
        // retry
        return true;
    } catch (InterruptedException x) {
        // retry
        return true;
    }

    // Fast path for cleaners
    if (c != null) {
        c.clean();
        return true;
    }
    // 加入对列
    ReferenceQueue <? super Object > q = r.queue;
    if (q != ReferenceQueue.NULL) q.enqueue(r);
    return true;
}

static {
    ThreadGroup tg = Thread.currentThread().getThreadGroup();
    for (ThreadGroup tgn = tg; tgn != null; tg = tgn, tgn = tg.getParent());
    // 创建handler
    Thread handler = new ReferenceHandler(tg, "Reference Handler");
    /* If there were a special system-only priority greater than
     * MAX_PRIORITY, it would be used here
     */
    // 线程优先级最大 
    handler.setPriority(Thread.MAX_PRIORITY);
    // 设置为守护线程
    handler.setDaemon(true);
    handler.start();

    // provide access in SharedSecrets
    SharedSecrets.setJavaLangRefAccess(new JavaLangRefAccess() {@
        Override
        public boolean tryHandlePendingReference() {
            return tryHandlePending(false);
        }
    });
}

put()

public V put(K key, V value) {
    // 确定key值,允许key为null
    Object k = maskNull(key);
    // 获取器hash值
    int h = hash(k);
    // 获取tab
    Entry <K, V> [] tab = getTable();
    // 确定在tab中的位置 简单的&操作
    int i = indexFor(h, tab.length);
    // 遍历,是否要进行覆盖操作  
    for (Entry <K, V> e = tab[i]; e != null; e = e.next) {
        if (h == e.hash && eq(k, e.get())) {
            //已经存在,则覆盖旧值
            V oldValue = e.value;
            if (value != oldValue)
                e.value = value;
            return oldValue;
        }
    }

    //不是旧值,就新建Entry
    // 修改次数自增
    modCount++;
    // 取出i上的元素
    Entry <K, V> e = tab[i];
    // 构建链表,新元素在链表头
    tab[i] = new Entry <> (k, value, queue, h, e);
    // 检查是否需要扩容
    if (++size >= threshold)
        resize(tab.length * 2);
    return null;
}

WeakHashMap的put操作与HashMap相似,都会进行覆盖操作(相同key),但是注意插入新节点是放在链表头;注意这里和HashMap不太一样的地方,HashMap会在链表太长的时候会将链表转换为红黑树,防止极端情况下hashcode冲突导致的性能问题,但在WeakHashMap中没有树化。

上述代码中还要一个关键的函数getTable

resize操作

WeakHashMap的扩容操作:在size大于阈值的时候,WeakHashMap也对做resize的操作,也就是把tab扩大一倍。WeakHashMap中的resize比HashMap中的resize要简单好懂些,但没HashMap中的resize优雅。

WeakHashMap中resize有另外一个额外的操作,就是expungeStaleEntries(),因为key可能被GC掉,所以在扩容时也需要考虑这种情况

void resize(int newCapacity) {
      Entry<K,V>[] oldTable = getTable();
      // 原数组长度
      int oldCapacity = oldTable.length;
      if (oldCapacity == MAXIMUM_CAPACITY) {
          threshold = Integer.MAX_VALUE;
          return;
      }
      // 创建新的数组  
     Entry<K,V>[] newTable = newTable(newCapacity);
     // 数据转移
     transfer(oldTable, newTable);
     table = newTable;
 
     /*
      * If ignoring null elements and processing ref queue caused massive
      * shrinkage, then restore old table.  This should be rare, but avoids
      * unbounded expansion of garbage-filled tables.
      */
     // 确定扩容阈值 
     if (size >= threshold / 2) {
         threshold = (int)(newCapacity * loadFactor);
     } else {
         // 清除被GC的value
         expungeStaleEntries();
         // 数组转移
         transfer(newTable, oldTable);
         table = oldTable;
     }
 }
     
  private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
     // 遍历原数组
     for (int j = 0; j < src.length; ++j) {
         // 取出元素
         Entry<K,V> e = src[j];
         src[j] = null;
         // 链式找元素
         while (e != null) {
             Entry<K,V> next = e.next;
             Object key = e.get();
             // key被回收的情况
             if (key == null) {
                e.next = null;  // Help GC
                 e.value = null; //  "   "
                 size--;
             } else {
                 // 确定在新数组的位置
                 int i = indexFor(e.hash, dest.length);
                 // 插入元素 注意这里为头插法,会倒序
                 e.next = dest[i];
                 dest[i] = e;
             }
             e = next;
         }
     }
 }

过期元素(弱引用)清除

该函数的主要作用就是清除Entry的value,该Entry是在GC清除key的过程中入队的。

 private void expungeStaleEntries() {
     // 从队列中取出被GC的Entry
     for (Object x; (x = queue.poll()) != null;) {
         synchronized(queue) {
             @SuppressWarnings("unchecked")
             Entry <K, V> e = (Entry <K, V> ) x;
             // 确定元素在队列中的位置
             int i = indexFor(e.hash, table.length);
             // 取出数组中的第一个元素 prev   
             Entry <K, V> prev = table[i];
             Entry <K, V> p = prev;
             // 循环
             while (p != null) {
                 Entry <K, V> next = p.next;
                 // 找到
                 if (p == e) {
                     // 判断是否是链表头元素 第一次时
                     if (prev == e)
                     	// 将next直接挂在i位置
                         table[i] = next;
                     else
                     	// 进行截断 
                         prev.next = next;
                         // Must not null out e.next;
                         // stale entries may be in use by a HashIterator
                     e.value = null; // Help GC
                     size--;
                     break;
                 }
                 // 更新prev和p
                 prev = p;
                 p = next;
             }
         }
     }
 }

当某个key失去所有强应用之后,其key对应的WeakReference对象会被放到queue里,有了queue就知道需要清理哪些Entry了。这里也是整个WeakHashMap里唯一加了同步的地方。  

除了上文说的到resize中调用了expungeStaleEntries(),size()、getTable()中也调用了这个清理方法,这就意味着几乎所有其他方法都间接调用了清理。

总结

  1. WeakHashMap非同步,默认容量为16,扩容因子默认为0.75,底层数据结构为Entry数组(数组+链表)
  2. WeakHashMap中的弱引用key会在下一次GC被清除,注意只会清除key,value会在每次调用expungeStaleEntries()的操作中清除。
  3. 注意:使用WeakHashMap做缓存时,如果只有它的key只有WeakHashMap本身在用,而在WeakHashMap之外没有对该key的强引用,那么GC时会回收这个key对应的entry。所以WeakHashMap不能用做主缓存,合适的用法应该是用它做二级的内存缓存,即过期缓存数据或者低频缓存数据

缺点

  • 非线程安全:关键修改方法没有提供任何同步,多线程环境下肯定会导致数据不一致的情况,所以使用时需要多注意。

  • 单纯作为Map没有HashMap好:HashMap在Jdk8做了好多优化,比如单链表在过长时会转化为红黑树,降低极端情况下的操作复杂度。但WeakHashMap没有相应的优化,有点像jdk8之前的HashMap版本。

  • 不能自定义ReferenceQueue:WeakHashMap构造方法中没法指定自定的ReferenceQueue,如果用户想用ReferenceQueue做一些额外的清理工作的话就行不通了。如果即想用WeakHashMap的功能,也想用ReferenceQueue,就得自己实现一套新的WeakHashMap了。

使用场景

  • Tomcat的源码里,实现缓存时会用到WeakHashMap

  • 阿里Arthas:阿里开源的Java诊断工具中使用了WeakHashMap做类-字节码的缓存。

// 类-字节码缓存
private final static Map<Class<?>/*Class*/, byte[]/*bytes of Class*/> classBytesCache
        = new WeakHashMap<Class<?>, byte[]>();

关于作者

来自一线程序员Seven的探索与实践,持续学习迭代中~

本文已收录于我的个人博客:https://www.seven97.top

公众号:seven97,欢迎关注~

From:https://www.cnblogs.com/seven97-top/p/18419349
本文地址: http://shuzixingkong.net/article/2114
0评论
提交 加载更多评论
其他文章 mongo 副本集rs 理解和使用小结
转载请注明出处: 在MongoDB中,rs(通常指的是“replica set”的缩写)是复制集(Replica Set)的标识符或在使用时的一种常见前缀,尤其是在命令行工具和脚本中引用复制集时。复制集是MongoDB用来实现数据冗余和高可用性的一个核心组件。 复制集(Replica Set)的作用
全面掌握 Jest:从零开始的测试指南(下篇)
在上一篇测试指南中,我们介绍了Jest 的背景、如何初始化项目、常用的匹配器语法以及钩子函数的使用。这一篇篇将继续深入探讨 Jest 的高级特性,包括 Mock 函数、异步请求的处理、Mock 请求的模拟、类的模拟以及定时器的模拟、snapshot 的使用。通过这些技术,我们将能够更高效地编写和维护
全面掌握 Jest:从零开始的测试指南(下篇)
扩展分析C语言单双引号、反斜杠与注释
目录注释奇怪的注释C风格的注释无法嵌套一些特殊的注释注释的规则建议反斜杠&#39;\&#39;反斜杠有续行的作用,但要注意续行后不能添加空格回车也能起到换行的作用,那续行符的意义在哪?反斜杠的转义功能单引号和双引号字面值,字符串,字符,字符变量的大小为什么sizeof(&#39;1&#39;)的大小
扩展分析C语言单双引号、反斜杠与注释 扩展分析C语言单双引号、反斜杠与注释 扩展分析C语言单双引号、反斜杠与注释
手脱upx
其实已经是大一下刚开始的事情了,补个档 手动脱壳の新年快乐 查壳,有壳,UPX X32dbg打开文件,查看初始断点 点击PUSHAD跟进,CTRL+*设置EIP,开始F8步过,寻找ESP寄存器第一次单个变红的地址 此时的内存窗口 开始步过 第一次步过就发现ESP单个变红,右键跟进内存窗口 然后在第一
手脱upx 手脱upx 手脱upx
云上分布式SQL Server,你值得拥有
云上分布式SQL Server,你值得拥有 介绍Microsoft SQL Azure 是微软的云关系型数据库,后端存储又称为云 SQL Server(Cloud SQL Server)。它构建在 SQL Server 之上,通过分布式技术提升传统关系型数据库的可扩展性和容错能力。 数据模型 (1)
云上分布式SQL Server,你值得拥有 云上分布式SQL Server,你值得拥有 云上分布式SQL Server,你值得拥有
DLA:动态层级注意力架构,实现特征图的持续动态刷新与交互 | IJCAI'24
论文深入探讨了层级注意力与一般注意力机制之间的区别,并指出现有的层级注意力方法是在静态特征图上实现层间交互的。这些静态层级注意力方法限制了层间上下文特征提取的能力。为了恢复注意力机制的动态上下文表示能力,提出了一种动态层级注意力(DLA)架构。DLA包括双路径,其中前向路径利用一种改进的递归神经网络
DLA:动态层级注意力架构,实现特征图的持续动态刷新与交互 | IJCAI'24 DLA:动态层级注意力架构,实现特征图的持续动态刷新与交互 | IJCAI'24 DLA:动态层级注意力架构,实现特征图的持续动态刷新与交互 | IJCAI'24
代码整洁之道--读书笔记(13)
代码整洁之道 简介: 本书是编程大师“Bob 大叔”40余年编程生涯的心得体会的总结,讲解要成为真正专业的程序员需要具备什么样的态度,需要遵循什么样的原则,需要采取什么样的行动。作者以自己以及身边的同事走过的弯路、犯过的错误为例,意在为后来者引路,助其职业生涯迈上更高台阶。 本书适合所有程序员阅读,
代码整洁之道--读书笔记(13) 代码整洁之道--读书笔记(13)
Log4j2—漏洞分析(CVE-2021-44228)
目录Log4j2漏洞原理漏洞根因调用链源码分析调用链总结漏洞复现dnsrmi Log4j2漏洞原理 前排提醒:本篇文章基于我另外一篇总结的JNDI注入后写的,建议先看该文章进行简单了解JNDI注入: https://blog.csdn.net/weixin_60521036/article/deta
Log4j2—漏洞分析(CVE-2021-44228) Log4j2—漏洞分析(CVE-2021-44228) Log4j2—漏洞分析(CVE-2021-44228)