首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

OpenTelemetry 实战:gRPC 监控的实现原理

编程知识
2024年09月04日 08:53

前言

最近在给 opentelemetry-java-instrumentation 提交了一个 PR,是关于给 gRPC 新增四个 metrics:

  • rpc.client.request.size: 客户端请求包大小
  • rpc.client.response.size:客户端收到的响应包大小
  • rpc.server.request.size:服务端收到的请求包大小
  • rpc.server.response.size:服务端响应的请求包大小

这个 PR 的主要目的就是能够在指标监控中拿到 RPC 请求的包大小,而这里的关键就是如何才能拿到这些包的大小。

首先支持的是 gRPC(目前在云原生领域使用的最多),其余的 RPC 理论上也是可以支持的:

在实现的过程中我也比较好奇 OpenTelemetry 框架是如何给 gRPC 请求创建 span 调用链的,如下图所示:
image.png
image.png

这是一个 gRPC 远程调用,java-demo 是 gRPC 的客户端,k8s-combat 是 gRPC 的服务端

在开始之前我们可以根据 OpenTelemetry 的运行原理大概猜测下它的实现过程。

首先我们应用可以创建这些链路信息的前提是:使用了 OpenTelemetry 提供的 javaagent,这个 agent 的原理是在运行时使用了 byte-buddy 增强了我们应用的字节码,在这些字节码中代理业务逻辑,从而可以在不影响业务的前提下增强我们的代码(只要就是创建 span、metrics 等数据)

Spring 的一些代理逻辑也是这样实现的

gRPC 增强原理

而在工程实现上,我们最好是不能对业务代码进行增强,而是要找到这些框架提供的扩展接口。

gRPC 来说,我们可以使用它所提供的 io.grpc.ClientInterceptorio.grpc.ServerInterceptor 接口来增强代码。

打开 io.opentelemetry.instrumentation.grpc.v1_6.TracingClientInterceptor 类我们可以看到它就是实现了 io.grpc.ClientInterceptor

而其中最关键的就是要实现 io.grpc.ClientInterceptor#interceptCall 函数:

@Override  
public <REQUEST, RESPONSE> ClientCall<REQUEST, RESPONSE> interceptCall(  
    MethodDescriptor<REQUEST, RESPONSE> method, CallOptions callOptions, Channel next) {  
  GrpcRequest request = new GrpcRequest(method, null, null, next.authority());  
  Context parentContext = Context.current();  
  if (!instrumenter.shouldStart(parentContext, request)) {  
    return next.newCall(method, callOptions);  
  }  
  Context context = instrumenter.start(parentContext, request);  
  ClientCall<REQUEST, RESPONSE> result;  
  try (Scope ignored = context.makeCurrent()) {  
    try {  
      // call other interceptors  
      result = next.newCall(method, callOptions);  
    } catch (Throwable e) {  
      instrumenter.end(context, request, Status.UNKNOWN, e);  
      throw e;  
    }  }  
  return new TracingClientCall<>(result, parentContext, context, request);  
}

这个接口是 gRPC 提供的拦截器接口,对于 gRPC 客户端来说就是在发起真正的网络调用前后会执行的方法。

所以在这个接口中我们就可以实现创建 span 获取包大小等逻辑。

使用 byte-buddy 增强代码

不过有一个问题是我们实现的 io.grpc.ClientInterceptor 类需要加入到拦截器中才可以使用:

var managedChannel = ManagedChannelBuilder.forAddress(host, port) .intercept(new TracingClientInterceptor()) // 加入拦截器
.usePlaintext()
.build();

但在 javaagent 中是没法给业务代码中加上这样的代码的。

此时就需要 byte-buddy 登场了,它可以动态修改字节码从而实现类似于修改源码的效果。

io.opentelemetry.javaagent.instrumentation.grpc.v1_6.GrpcClientBuilderBuildInstr umentation 类里可以看到 OpenTelemetry 是如何使用 byte-buddy 的。

  @Override
  public ElementMatcher<TypeDescription> typeMatcher() {
    return extendsClass(named("io.grpc.ManagedChannelBuilder"))
        .and(declaresField(named("interceptors")));
  }

  @Override
  public void transform(TypeTransformer transformer) {
    transformer.applyAdviceToMethod(
        isMethod().and(named("build")),
        GrpcClientBuilderBuildInstrumentation.class.getName() + "$AddInterceptorAdvice");
  }

  @SuppressWarnings("unused")
  public static class AddInterceptorAdvice {

    @Advice.OnMethodEnter(suppress = Throwable.class)
    public static void addInterceptor(
        @Advice.This ManagedChannelBuilder<?> builder,
        @Advice.FieldValue("interceptors") List<ClientInterceptor> interceptors) {
      VirtualField<ManagedChannelBuilder<?>, Boolean> instrumented =
          VirtualField.find(ManagedChannelBuilder.class, Boolean.class);
      if (!Boolean.TRUE.equals(instrumented.get(builder))) {
        interceptors.add(0, GrpcSingletons.CLIENT_INTERCEPTOR);
        instrumented.set(builder, true);
      }
    }
  }

从这里的源码可以看出,使用了 byte-buddy 拦截了 io.grpc.ManagedChannelBuilder#intercept(java.util.List<io.grpc.ClientInterceptor>) 函数。

io.opentelemetry.javaagent.extension.matcher.AgentElementMatchers#extendsClass/ isMethod 等函数都是 byte-buddy 库提供的函数。

而这个函数正好就是我们需要在业务代码里加入拦截器的地方。

interceptors.add(0, GrpcSingletons.CLIENT_INTERCEPTOR);
GrpcSingletons.CLIENT_INTERCEPTOR = new TracingClientInterceptor(clientInstrumenter, propagators);

通过这行代码可以手动将 OpenTelemetry 里的 TracingClientInterceptor 加入到拦截器列表中,并且作为第一个拦截器。

而这里的:

extendsClass(named("io.grpc.ManagedChannelBuilder"))
        .and(declaresField(named("interceptors")))

通过函数的名称也可以看出是为了找到 继承了io.grpc.ManagedChannelBuilder 类中存在成员变量 interceptors 的类。

transformer.applyAdviceToMethod(  
    isMethod().and(named("build")),  
    GrpcClientBuilderBuildInstrumentation.class.getName() + "$AddInterceptorAdvice");

然后在调用 build 函数后就会进入自定义的 AddInterceptorAdvice 类,从而就可以拦截到添加拦截器的逻辑,然后把自定义的拦截器加入其中。

获取 span 的 attribute

我们在 gRPC 的链路中还可以看到这个请求的具体属性,比如:

  • gRPC 服务提供的 IP 端口。
  • 请求的响应码
  • 请求的 service 和 method
  • 线程等信息。

这些信息在问题排查过程中都是至关重要的。

可以看到这里新的 attribute 主要是分为了三类:

  • net.* 是网络相关的属性
  • rpc.* 是和 grpc 相关的属性
  • thread.* 是线程相关的属性

所以理论上我们在设计 API 时最好可以将这些不同分组的属性解耦开,如果是 MQ 相关的可能还有一些 topic 等数据,所以各个属性之间是互不影响的。

带着这个思路我们来看看 gRPC 这里是如何实现的。

clientInstrumenterBuilder
	.setSpanStatusExtractor(GrpcSpanStatusExtractor.CLIENT)
	.addAttributesExtractors(additionalExtractors)
        .addAttributesExtractor(RpcClientAttributesExtractor.create(rpcAttributesGetter))
        .addAttributesExtractor(ServerAttributesExtractor.create(netClientAttributesGetter))
        .addAttributesExtractor(NetworkAttributesExtractor.create(netClientAttributesGetter))

OpenTelemetry 会提供一个 io.opentelemetry.instrumentation.api.instrumenter.InstrumenterBuilder#addAttributesExtractor构建器函数,用于存放自定义的属性解析器。

从这里的源码可以看出分别传入了网络相关、RPC 相关的解析器;正好也就对应了图中的那些属性,也满足了我们刚才提到的解耦特性。

而每一个自定义属性解析器都需要实现接口 io.opentelemetry.instrumentation.api.instrumenter.AttributesExtractor

public interface AttributesExtractor<REQUEST, RESPONSE> {
}

这里我们以 GrpcRpcAttributesGetter 为例。

enum GrpcRpcAttributesGetter implements RpcAttributesGetter<GrpcRequest> {
  INSTANCE;

  @Override
  public String getSystem(GrpcRequest request) {
    return "grpc";
  }

  @Override
  @Nullable
  public String getService(GrpcRequest request) {
    String fullMethodName = request.getMethod().getFullMethodName();
    int slashIndex = fullMethodName.lastIndexOf('/');
    if (slashIndex == -1) {
      return null;
    }
    return fullMethodName.substring(0, slashIndex);
  }

可以看到 system 是写死的 grpc,也就是对于到页面上的 rpc.system 属性。

而这里的 getService 函数则是拿来获取 rpc.service 属性的,可以看到它是通过 gRPC 的method 信息来获取 service 的。


public interface RpcAttributesGetter<REQUEST> {  
  
  @Nullable  
  String getService(REQUEST request);
}

而这里 REQUEST 其实是一个泛型,在 gRPC 里是 GrpcRequest,在其他 RPC 里这是对应的 RPC 的数据。

这个 GrpcRequest 是在我们自定义的拦截器中创建并传递的。

而我这里需要的请求包大小也是在拦截中获取到数据然后写入进 GrpcRequest。

static <T> Long getBodySize(T message) {  
  if (message instanceof MessageLite) {  
    return (long) ((MessageLite) message).getSerializedSize();  
  } else {  
    // Message is not a protobuf message  
    return null;  
  }}

这样就可以实现不同的 RPC 中获取自己的 attribute,同时每一组 attribute 也都是隔离的,互相解耦。

自定义 metrics

每个插件自定义 Metrics 的逻辑也是类似的,需要由框架层面提供 API 接口:

public InstrumenterBuilder<REQUEST, RESPONSE> addOperationMetrics(OperationMetrics factory) {  
  operationMetrics.add(requireNonNull(factory, "operationMetrics"));  
  return this;  
}
// 客户端的 metrics
.addOperationMetrics(RpcClientMetrics.get());

// 服务端的 metrics
.addOperationMetrics(RpcServerMetrics.get());

之后也会在框架层面回调这些自定义的 OperationMetrics:

    if (operationListeners.length != 0) {
      // operation listeners run after span start, so that they have access to the current span
      // for capturing exemplars
      long startNanos = getNanos(startTime);
      for (int i = 0; i < operationListeners.length; i++) {
        context = operationListeners[i].onStart(context, attributes, startNanos);
      }
    }

	if (operationListeners.length != 0) {  
	  long endNanos = getNanos(endTime);  
	  for (int i = operationListeners.length - 1; i >= 0; i--) {  
	    operationListeners[i].onEnd(context, attributes, endNanos);  
	  }
	}

这其中最关键的就是两个函数 onStart 和 onEnd,分别会在当前这个 span 的开始和结束时进行回调。

所以通常的做法是在 onStart 函数中初始化数据,然后在 onEnd 结束时统计结果,最终可以拿到 metrics 所需要的数据。

以这个 rpc.client.duration 客户端的请求耗时指标为例:

@Override  
public Context onStart(Context context, Attributes startAttributes, long startNanos) {  
  return context.with(  
      RPC_CLIENT_REQUEST_METRICS_STATE,  
      new AutoValue_RpcClientMetrics_State(startAttributes, startNanos));  
}

@Override  
public void onEnd(Context context, Attributes endAttributes, long endNanos) {  
  State state = context.get(RPC_CLIENT_REQUEST_METRICS_STATE);
	Attributes attributes = state.startAttributes().toBuilder().putAll(endAttributes).build();  
	clientDurationHistogram.record(  
	    (endNanos - state.startTimeNanos()) / NANOS_PER_MS, attributes, context);
}

在开始时记录下当前的时间,结束时获取当前时间和结束时间的差值正好就是这个 span 的执行时间,也就是 rpc client 的处理时间。

OpenTelemetry 中绝大多数的请求时间都是这么记录的。

Golang 增强

而在 Golang 中因为没有 byte-buddy 这种魔法库的存在,不可以直接修改源码,所以通常的做法还是得硬编码才行。

还是以 gRPC 为例,我们在创建 gRPC server 时就得指定一个 OpenTelemetry 提供的函数。

s := grpc.NewServer(  
    grpc.StatsHandler(otelgrpc.NewServerHandler()),  
)

在这个 SDK 中也会实现刚才在 Java 里类似的逻辑,限于篇幅具体逻辑就不细讲了。

总结

以上就是 gRPCOpenTelemetry 中的具体实现,主要就是在找到需要增强框架是否有提供扩展的接口,如果有就直接使用该接口进行埋点。

如果没有那就需要查看源码,找到核心逻辑,再使用 byte-buddy 进行埋点。

比如 Pulsar 并没有在客户端提供一些扩展接口,只能找到它的核心函数进行埋点。

而在具体埋点过程中 OpenTelemetry 提供了许多解耦的 API,方便我们实现埋点所需要的业务逻辑,也会在后续的文章继续分析 OpenTelemetry 的一些设计原理和核心 API 的使用。

这部分 API 的设计我觉得是 OpenTelemetry 中最值得学习的地方。

参考链接:

From:https://www.cnblogs.com/crossoverJie/p/18395891
本文地址: http://shuzixingkong.net/article/1721
0评论
提交 加载更多评论
其他文章 LoRA大模型微调的利器
LoRA模型是小型的Stable Diffusion模型,它们对checkpoint模型进行微小的调整。它们的体积通常是检查点模型的10到100分之一。因为体积小,效果好,所以lora模型的使用程度比较高。
LoRA大模型微调的利器 LoRA大模型微调的利器 LoRA大模型微调的利器
LLM大模型基础知识学习总结
在这个已经被AI大模型包围的时代,不了解一点大模型的基础知识和相关概念,可能出去聊天都接不上话。刚好近期我也一直在用GPT和GitHub Copilot,也刚好对这些基础知识很感兴趣,于是学习了一下,做了如下的整理总结,分享与你!
LLM大模型基础知识学习总结 LLM大模型基础知识学习总结 LLM大模型基础知识学习总结
1p-frac:已开源,仅用单张分形图片即可媲美ImageNet的预训练效果 | ECCV 2024
分形几何是一个数学分支,主要应用于作图方面。一般来说,分形经过无数次递归迭代后的结果。比如取一条线段,抹去中间的三分之一,会得到长度是原三分之一长的两条线段,中间隔着相同长度的间隙。然后重复这个动作,直到所有的线段都被抹掉,就将会得到被以固定模式出现的间隙隔开的无限多的点,这就是康托尔集合。 目前有
1p-frac:已开源,仅用单张分形图片即可媲美ImageNet的预训练效果 | ECCV 2024 1p-frac:已开源,仅用单张分形图片即可媲美ImageNet的预训练效果 | ECCV 2024 1p-frac:已开源,仅用单张分形图片即可媲美ImageNet的预训练效果 | ECCV 2024
架构师备考的一些思考
前言 之前的python-pytorch的系列文章还没有写完,只是写到卷积神经网络。因为我报名成功了系统架构师的考试,所以决定先备考,等考完再继续写。 虽然架构师证书不能证明技术水平,但在现实生活中的某些情况下是有意义的。考试虽然无聊,但有些考题还是蛮有意思的。 思考 看了几套架构师的考题,发现个有
架构师备考的一些思考 架构师备考的一些思考
WebShell流量特征检测_冰蝎篇
80后用菜刀,90后用蚁剑,95后用冰蝎和哥斯拉,以phpshell连接为例,本文主要是对这四款经典的webshell管理工具进行流量分析和检测。 什么是一句话木马? 1、定义 顾名思义就是执行恶意指令的木马,通过技术手段上传到指定服务器并可以正常访问,将我们需要服务器执行的命令上传并执行 2、特点
WebShell流量特征检测_冰蝎篇 WebShell流量特征检测_冰蝎篇 WebShell流量特征检测_冰蝎篇
manim边学边做--曲线类
manim中曲线,除了前面介绍的圆弧类曲线,也可以绘制任意的曲线。 manim中提供的CubicBezier模块,可以利用三次贝塞尔曲线的方式绘制任意曲线。 关于贝塞尔曲线的介绍,可以参考:https://en.wikipedia.org/wiki/B%C3%A9zier_curve。 本文主要介绍
manim边学边做--曲线类 manim边学边做--曲线类 manim边学边做--曲线类
(八)Redis 主从复制、切片集群
一、主从复制 1、主从关系 都说的 Redis 具有高可靠性,这里有两层含义:一是数据尽量少丢失,二是服务尽量少中断。AOF 和 RDB 保证了前者,而对于后者,Redis 的做法就是将一份数据同时保存在多个实例上。为了保证数据一致性,Redis 提供了主从库模式,并采用读写分离的方式,如图 2、主
(八)Redis 主从复制、切片集群 (八)Redis 主从复制、切片集群 (八)Redis 主从复制、切片集群
.NET 8.0 文档管理系统网盘功能的实现
前言 大家好,今天推荐一个文档管理系统Dorisoy.Pan。 Dorisoy.Pan 是一个基于 .NET 8 和 WebAPI 构建的文档管理系统,它集成了 Autofac、MediatR、JWT、EF Core、MySQL 8.0 和 SQL Server 等技术,以实现一个简单、高性能、稳定
.NET 8.0 文档管理系统网盘功能的实现 .NET 8.0 文档管理系统网盘功能的实现 .NET 8.0 文档管理系统网盘功能的实现