首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

OpenCV开发笔记(八十):基于特征点匹配实现全景图片拼接

编程知识
2024年09月02日 12:16

前言

  一个摄像头视野不大的时候,我们希望进行两个视野合并,这样让正视的视野增大,从而可以看到更广阔的标准视野。拼接的方法分为两条路,第一条路是Sticher类,第二条思路是特征点匹配。
  本篇使用特征点匹配,进行两张图来视野合并拼接。

 

Demo

  100%的点匹配
  在这里插入图片描述

  换了一幅图:
  在这里插入图片描述

  所以,opencv传统的方式,对这些特征点是有一些要求的。(注意:这两张图使用sStitcher类实现全景图片拼接,是无法拼接成功的!!!)

两张图的拼接过程

步骤一:打开图片

  在这里插入图片描述

 cv::Mat leftImageMat = cv::imread("D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/30.jpg");
 cv::Mat rightImageMat = cv::imread("D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/31.jpg");

步骤二:提取特征点

  在这里插入图片描述

// 提取特征点
cv::Ptr<cv::xfeatures2d::SurfFeatureDetector> pSurfFeatureDetector = cv::xfeatures2d::SurfFeatureDetector::create();
std::vector<cv::KeyPoint> leftKeyPoints;
std::vector<cv::KeyPoint> rightKeyPoints;
cv::Mat leftMatch;
cv::Mat rightMatch;
std::vector<cv::DMatch> matches;
pSurfFeatureDetector->detectAndCompute(leftImageGrayMat, cv::Mat(), leftKeyPoints, leftMatch);
pSurfFeatureDetector->detectAndCompute(rightImageGrayMat, cv::Mat(), rightKeyPoints, rightMatch);

步骤三:暴力匹配

  在这里插入图片描述

// 暴力匹配
cv::Ptr<cv::FlannBasedMatcher> pFlannBasedMatcher = cv::FlannBasedMatcher::create();
pFlannBasedMatcher->match(leftMatch, rightMatch, matches);

步骤四:提取暴力匹配后比较好的点

  在这里插入图片描述

// 筛选匹配点, 根据match的距离从小到大排序
std::sort(matches.begin(), matches.end());
// 筛选匹配点,根据排序留下最好的匹配点
std::vector<cv::DMatch> goodMatchs;
// 阈值最小个数点
int count = 40;
// 阈值点个数 小于 总量的10% 则使用 总量的10%
int validPoints = (int)(matches.size() * 1.0f);
if(validPoints > count)
{
    count = validPoints;
}
// 所有匹配点小于阈值,那么就取所有点
if(matches.size() < count)
{
    count = matches.size();
}
// 将筛选出的点当作较好的点
for(int index = 0; index < count; index++)
{
    goodMatchs.push_back(matches.at(index));
}
// 匹配结果
cv::Mat matchedMat;
// 绘制结果, 注意顺序
cv::drawMatches(leftImageMat, leftKeyPoints, rightImageMat, rightKeyPoints, goodMatchs, matchedMat);
#if 1
cv::namedWindow("matchedMat", cv::WINDOW_NORMAL);
cv::resizeWindow("matchedMat", cv::Size(800, 300));
cv::imshow("matchedMat", matchedMat);
#endif

步骤五:计算变换矩阵

  在这里插入图片描述

// 准备匹配的点
std::vector<cv::Point2f> leftImagePoints;
std::vector<cv::Point2f> rightImagePoints;
for(int index = 0; index < goodMatchs.size(); index++)
{
    leftImagePoints.push_back(rightKeyPoints.at(goodMatchs.at(index).trainIdx).pt);
    rightImagePoints.push_back(leftKeyPoints.at(goodMatchs.at(index).queryIdx).pt);
}

// 使用暴力匹配的点计算透视变换矩阵
cv::Mat m = cv::findHomography(leftImagePoints, rightImagePoints, CV_RANSAC);

步骤六:计算第二张图变换后的图像的大小

  在这里插入图片描述

// 计算第二张图的变换大小
cv::Point2f leftTopPoint2f;
cv::Point2f leftBottomPoint2f;
cv::Point2f rightTopPoint2f;
cv::Point2f rightBottomPoint2f;
cv::Mat H = m.clone();
cv::Mat src = leftImageMat.clone();
{
    cv::Mat V1;
    cv::Mat V2;
    // 左上角(0, 0, 1)
    double v2[3] = {0, 0, 1};
    // 变换后的坐标值
    double v1[3];
    //列向量
    V2 = cv::Mat(3, 1, CV_64FC1, v2);
    V1 = cv::Mat(3, 1, CV_64FC1, v1);
    V1 = H * V2;
    leftTopPoint2f.x = v1[0] / v1[2];
    leftTopPoint2f.y = v1[1] / v1[2];

    // 左下角(0, src.rows, 1)
    v2[0] = 0;
    v2[1] = src.rows;
    v2[2] = 1;
    V2 = cv::Mat(3, 1, CV_64FC1, v2);
    V1 = cv::Mat(3, 1, CV_64FC1, v1);
    V1 = H * V2;
    leftBottomPoint2f.x = v1[0] / v1[2];
    leftBottomPoint2f.y = v1[1] / v1[2];

    // 右上角(src.cols, 0, 1)
    v2[0] = src.cols;
    v2[1] = 0;
    v2[2] = 1;
    V2 = cv::Mat(3, 1, CV_64FC1, v2);
    V1 = cv::Mat(3, 1, CV_64FC1, v1);
    V1 = H * V2;
    rightTopPoint2f.x = v1[0] / v1[2];
    rightTopPoint2f.y = v1[1] / v1[2];

    // 右下角(src.cols,src.rows,1)
    v2[0] = src.cols;
    v2[1] = src.rows;
    v2[2] = 1;
    V2 = cv::Mat(3, 1, CV_64FC1, v2);
    V1 = cv::Mat(3, 1, CV_64FC1, v1);
    V1 = H * V2;
    rightBottomPoint2f.x = v1[0] / v1[2];
    rightBottomPoint2f.y = v1[1] / v1[2];
}

步骤七:对第二张图进行举证变化且变为目标大小

  在这里插入图片描述

// 图像变换
cv::Mat imageTransform1;
cv::warpPerspective(rightImageMat,                                          // 源图
                    imageTransform1,                                        // 变换后的输出图
                    m,                                                      // 变换矩阵
                    cv::Size(MAX(rightTopPoint2f.x, rightBottomPoint2f.x),  // 输出图像宽度
                             leftImageMat.rows));                           // 输出图像高度
cv::namedWindow("imageTransform1", cv::WINDOW_NORMAL);
cv::resizeWindow("imageTransform1", cv::Size(400, 300));
cv::imshow("imageTransform1", imageTransform1);

步骤八:进行融合

  在这里插入图片描述

  在这里插入图片描述

// 创建拼接后的图
int resultWidth = imageTransform1.cols;
int resultHeight = rightImageMat.rows;
if(imageTransform1.cols < leftImageMat.cols)
{
    resultWidth = leftImageMat.cols;
}
if(imageTransform1.rows < leftImageMat.rows)
{
    resultHeight = leftImageMat.rows;
}
cv::Mat resultMat(resultHeight, resultWidth, CV_8UC3);
resultMat.setTo(0);
···

// 开始拷贝
LOG << imageTransform1.cols << imageTransform1.rows;
LOG << "copy to";
LOG << resultMat.cols << resultMat.rows;
imageTransform1.copyTo(resultMat(cv::Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));
LOG << rightImageMat.cols << rightImageMat.rows;
LOG << "copy to";
LOG << resultMat.cols << resultMat.rows;
leftImageMat.copyTo(resultMat(cv::Rect(0, 0, leftImageMat.cols, leftImageMat.rows)));

步骤九:对重叠区域进行渐进色过度

  由于实际效果出现重影,查阅相关资料,这部分可以消除一部分,但是需要深入研究,而且消除一部分也只是达到较可以的水平,并不能完全消除。
  cpp有兴趣读者,可以深入研究沟通这块。
  比较明确的方法就是查看Stitcher的源码研究,将其投影矩阵部分重叠消除的代码抠出来。

 

匹配点数调参测试

强制40个点

  在这里插入图片描述

匹配探测到的10%的点

   在这里插入图片描述

匹配探测到的60%的点

  在这里插入图片描述

匹配探测到的100%的点

  在这里插入图片描述

 

函数原型

函数static Ptr create

static Ptr<SURF> create(double hessianThreshold=100,
                        int nOctaves = 4,
                        int nOctaveLayers = 3,
                        bool extended = false,
                        bool upright = false);
  • 参数一:double类型的hessianThreshold,默认值100,用于SURF的hessian关键点检测器的阈值;
  • 参数二:int类型的nOctaves,默认值4,关键点检测器将使用的金字塔倍频程数;
  • 参数三:int类型的nOctaveLayers,默认值3,每八度音阶的层数。3是D.Lowe纸张中使用的值。这个八度音阶数是根据图像分辨率自动计算出来的;
  • 参数四:bool类型的extended,扩展描述符标志(true-使用扩展的128个元素描述符;false-使用64个元素描述符),默认false;
  • 参数五:bool类型的upright,向上向右或旋转的特征标志(true-不计算特征的方向;faslse-计算方向),默认false;

函数xfeatures2d::SURT::detectAndCompute

// 该函数结合了detect和compute,参照detect和compute函数参数
void xfeatures2d::SURT::detectAndCompute( InputArray image,
                                          InputArray mask,
                                          std::vector<KeyPoint>& keypoints,
                                          OutputArray descriptors,
                                          bool useProvidedKeypoints=false );

  detectAndCompute函数是OpenCV库中用于特征检测与计算的函数,其原型根据不同的特征检测器(如SIFT、SURF、ORB等)可能略有不同,但大体上遵循相似的参数结构。

  • 参数一:InputArray类型的image,输入cv::Mat;
  • 参数二:InputArray类型的mask,输入cv::Mat,不需要时,直接可以cv::Mat()即可;
  • 参数三:std::Vector类型的keypoints,原图的关键点;
  • 参数四:OutputArray类型的descriptors,计算描述符;
  • 参数五:如果设置为true,则函数会假设keypoints向量中已经包含了一些关键点,函数将只计算这些点的描述子,而不是重新检测关键点。

函数cv::FlannBasedMatcher::create

static Ptr<BFMatcher> create()

  初始化暴力匹配实例。

函数cv::FlannBasedMatcher::match

void BFMatcher::match(InputArray queryDescriptors,
                    InputArray trainDescriptors,
                    std::vector<DMatch>& matches,
                    InputArray mask=noArray() ) const;
  • 参数一:InputArray类型的queryDescriptors,查询描述符集,一般cv::Mat,某个特征提取的描述符。
  • 参数二:InputArray类型的trainDescriptors,训练描述符集,此处输入的应该是没有加入到类对象集合种的(该类有训练的数据集合),一般cv::Mat,某个特征提取的描述符。
  • 参数三:std::vector类型的matches。如果在掩码中屏蔽了查询描述符,则不会为此添加匹配项描述符。因此,匹配项的大小可能小于查询描述符计数。
  • 参数四:InputArray类型的mask,指定输入查询和训练矩阵之间允许的匹配的掩码描述符。

函数cv::drawMatches

void drawMatches( InputArray img1,
                  const std::vector<KeyPoint>& keypoints1,
                  InputArray img2,
                  const std::vector<KeyPoint>& keypoints2,
                  const std::vector<DMatch>& matches1to2,
                  InputOutputArray outImg,
                  const Scalar& matchColor=Scalar::all(-1),
                  const Scalar& singlePointColor=Scalar::all(-1),
                  const std::vector<char>& matchesMask=std::vector<char>(),
                  int flags=DrawMatchesFlags::DEFAULT );
  • 参数一:InputArray类型的img1,图像1。
  • 参数二:std::vector类型的keypoints1,图像1的关键点。
  • 参数三:InputArray类型的img2,图像2。
  • 参数四:std::vector类型的keypoints2,图像2的关键点。
  • 参数五:std::vector类型的matchers1to2,从第一个图像匹配到第二个图像,这意味着keypoints1[i]在keypoints2中有一个对应的点[matches[i]]。
  • 参数六:InputOutputArray类型的outImg,为空时,默认并排绘制输出图像以及连接关键点;若不为空,则在图像上绘制关系点。
  • 参数七:Scalar类型的matcherColor,匹配颜色匹配(线和连接的关键点)的颜色。如果颜色为cv::Scalar::all(-1),则为随机颜色。
  • 参数八:Scalar类型的singlePointColor,颜色单个关键点(圆)的颜色,这意味着关键点没有匹配到的则认是该颜色。
  • 参数九:std::vector类型的matchersMask,确定绘制的匹配项目,若是为空,则表示全部绘制。
  • 参数十:int类型的flags,查看枚举DrawMatchesFlags,如下:
      在这里插入图片描述

函数cv::findHomography

  cv::findHomography 是 OpenCV 库中的一个函数,用于在两组二维点之间寻找单应性矩阵(Homography Matrix)。单应性矩阵是一个 3x3 的矩阵,它将一个平面上的点映射到另一个平面(可能是同一个平面,但通常是在不同的视角或条件下)上的点。这在计算机视觉和图像处理中非常有用,比如图像拼接、增强现实、相机姿态估计等领域。

cv::Mat cv::findHomography(InputArray srcPoints,  
                        InputArray dstPoints,  
                        int method = 0,  
                        double ransacReprojThresh = 3,  
                        OutputArray mask = noArray(),  
                        const int maxIters = 2000,  
                        const double confidence = 0.995);
  • 参数一:srcPoints,源图像中的点集,通常是 std::vectorcv::Point2f 或 cv::Mat 类型,其中每行代表一个点的 x 和 y 坐标。
  • 参数二:dstPoints:目标图像中对应的点集,与 srcPoints 格式相同。
  • 参数三:method:单应性矩阵的计算方法。常见的值有 0(使用所有点,默认方法)、cv::RANSAC(RANdom SAmple Consensus,基于随机样本一致性的鲁棒方法)、cv::LMEDS(Least-Median of Squares,基于最小中值平方的方法,对噪声和异常值有较好的鲁棒性)等。
  • 参数四:ransacReprojThresh,当 method 设置为 cv::RANSAC 或 cv::RANSAC_FIXED_POINT 时,此参数指定了重投影误差的最大阈值,用于判断点是否为内点。
  • 参数五:mask,输出参数,一个与输入点集同样大小的掩码,用于指示哪些点被认为是内点(即,在计算单应性矩阵时使用的点)。
  • 参数六:maxIters,当 method 为 cv::RANSAC 或 cv::LMEDS 时,此参数指定了算法的最大迭代次数。
  • 参数七:confidence,当 method 为 cv::RANSAC 时,此参数指定了算法计算出的单应性矩阵的置信度(即在估计的模型是正确模型的概率)。

函数cv::warpPerspective

void cv::warpPerspective(InputArray src,  
                         OutputArray dst,  
                         InputArray M,  
                         Size dsize,  
                         int flags = INTER_LINEAR,  
                         int borderMode = BORDER_CONSTANT,  
                         const Scalar& borderValue = Scalar());
  • 参数一:src,输入图像,即要进行透视变换的原始图像。
  • 参数二:dst,输出图像,即透视变换后的图像。这个图像将与 dsize 指定的尺寸相同。
  • 参数三:M,3x3 的透视变换矩阵。这个矩阵定义了如何将 src 中的点映射到 dst 中的新位置。
  • 参数四:dsize,输出图像的尺寸。这个参数是必需的,因为透视变换可能会改变图像的大小。
  • 参数五:flags,插值方法。默认为 INTER_LINEAR,表示双线性插值。其他选项包括 INTER_NEAREST(最近邻插值)、INTER_CUBIC(双三次插值)等。
  • 参数六:borderMode,边界像素的外推方法。默认为 BORDER_CONSTANT,表示用恒定的值(borderValue)填充边界外的像素。其他选项包括 BORDER_REPLICATE(复制边缘像素)、BORDER_REFLECT(反射边缘像素)等。
  • 参数七:borderValue,当 borderMode 为 BORDER_CONSTANT 时,用于填充边界像素的值。默认为 Scalar(),即黑色。

函数cv::Mat::copyTo

void cv::Mat::copyTo(OutputArray m, InputArray mask=noArray()) const;

  cv::Mat::copyTo 是 OpenCV 库中 cv::Mat 类的一个成员函数,用于将一个矩阵(图像、数组等)的内容复制到另一个矩阵中。这个函数非常有用,因为它允许你复制矩阵的全部或部分数据,同时可以选择性地更新目标矩阵的大小和类型。

  • 参数一:输出矩阵m,即复制内容的目标矩阵。如果 m 的大小和类型与源矩阵(调用 copyTo 的矩阵)不同,m 会被重新分配以匹配源矩阵的大小和类型。
  • 参数二(可选):mask:一个与源矩阵同样大小的8位单通道矩阵,用于指定哪些元素应该被复制到目标矩阵中。如果 mask 的某个位置的值非零,则源矩阵对应位置的元素会被复制到目标矩阵;如果为零,则目标矩阵对应位置的元素不会被修改(保持原样或初始化为零,取决于目标矩阵的初始状态)。
 

Demo源码

void OpenCVManager::testSplicingImages()
{
    cv::Mat leftImageMat = cv::imread("D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/30.jpg");
    cv::Mat rightImageMat = cv::imread("D:/qtProject/openCVDemo/openCVDemo/modules/openCVManager/images/31.jpg");

#if 0
    // 对图片进行缩放,测试其拼接耗时
    cv::resize(mat1, mat1, cv::Size(1920, 1080));
    cv::resize(mat2, mat2, cv::Size(1920, 1080));
#endif

    //灰度图转换
    cv::Mat leftImageGrayMat;
    cv::Mat rightImageGrayMat;

    cv::cvtColor(leftImageMat, leftImageGrayMat, CV_RGB2GRAY);
    cv::cvtColor(rightImageMat, rightImageGrayMat, CV_RGB2GRAY);

    // 提取特征点
    cv::Ptr<cv::xfeatures2d::SurfFeatureDetector> pSurfFeatureDetector = cv::xfeatures2d::SurfFeatureDetector::create();
    std::vector<cv::KeyPoint> leftKeyPoints;
    std::vector<cv::KeyPoint> rightKeyPoints;
    cv::Mat leftMatch;
    cv::Mat rightMatch;
    std::vector<cv::DMatch> matches;
    pSurfFeatureDetector->detectAndCompute(leftImageGrayMat, cv::Mat(), leftKeyPoints, leftMatch);
    pSurfFeatureDetector->detectAndCompute(rightImageGrayMat, cv::Mat(), rightKeyPoints, rightMatch);
    // 暴力匹配
    cv::Ptr<cv::FlannBasedMatcher> pFlannBasedMatcher = cv::FlannBasedMatcher::create();
    pFlannBasedMatcher->match(leftMatch, rightMatch, matches);
    // 筛选匹配点, 根据match的距离从小到大排序
    std::sort(matches.begin(), matches.end());
    // 筛选匹配点,根据排序留下最好的匹配点
    std::vector<cv::DMatch> goodMatchs;
    // 阈值最小个数点
    int count = 40;
    // 阈值点个数 小于 总量的10% 则使用 总量的10%
    int validPoints = (int)(matches.size() * 1.0f);
    if(validPoints > count)
    {
        count = validPoints;
    }
    // 所有匹配点小于阈值,那么就取所有点
    if(matches.size() < count)
    {
        count = matches.size();
    }
    // 将筛选出的点当作较好的点
    for(int index = 0; index < count; index++)
    {
        goodMatchs.push_back(matches.at(index));
    }
    // 匹配结果
    cv::Mat matchedMat;
    // 绘制结果, 注意顺序
    cv::drawMatches(leftImageMat, leftKeyPoints, rightImageMat, rightKeyPoints, goodMatchs, matchedMat);
#if 1
    cv::namedWindow("matchedMat", cv::WINDOW_NORMAL);
    cv::resizeWindow("matchedMat", cv::Size(800, 300));
    cv::imshow("matchedMat", matchedMat);
#endif

    // 准备匹配的点
    std::vector<cv::Point2f> leftImagePoints;
    std::vector<cv::Point2f> rightImagePoints;
    for(int index = 0; index < goodMatchs.size(); index++)
    {
        leftImagePoints.push_back(rightKeyPoints.at(goodMatchs.at(index).trainIdx).pt);
        rightImagePoints.push_back(leftKeyPoints.at(goodMatchs.at(index).queryIdx).pt);
    }

    // 使用暴力匹配的点计算透视变换矩阵
    cv::Mat m = cv::findHomography(leftImagePoints, rightImagePoints, CV_RANSAC);

    // 计算第二张图的变换大小
    cv::Point2f leftTopPoint2f;
    cv::Point2f leftBottomPoint2f;
    cv::Point2f rightTopPoint2f;
    cv::Point2f rightBottomPoint2f;
    cv::Mat H = m.clone();
    cv::Mat src = leftImageMat.clone();
    {
        cv::Mat V1;
        cv::Mat V2;
        // 左上角(0, 0, 1)
        double v2[3] = {0, 0, 1};
        // 变换后的坐标值
        double v1[3];
        //列向量
        V2 = cv::Mat(3, 1, CV_64FC1, v2);
        V1 = cv::Mat(3, 1, CV_64FC1, v1);
        V1 = H * V2;
        leftTopPoint2f.x = v1[0] / v1[2];
        leftTopPoint2f.y = v1[1] / v1[2];

        // 左下角(0, src.rows, 1)
        v2[0] = 0;
        v2[1] = src.rows;
        v2[2] = 1;
        V2 = cv::Mat(3, 1, CV_64FC1, v2);
        V1 = cv::Mat(3, 1, CV_64FC1, v1);
        V1 = H * V2;
        leftBottomPoint2f.x = v1[0] / v1[2];
        leftBottomPoint2f.y = v1[1] / v1[2];

        // 右上角(src.cols, 0, 1)
        v2[0] = src.cols;
        v2[1] = 0;
        v2[2] = 1;
        V2 = cv::Mat(3, 1, CV_64FC1, v2);
        V1 = cv::Mat(3, 1, CV_64FC1, v1);
        V1 = H * V2;
        rightTopPoint2f.x = v1[0] / v1[2];
        rightTopPoint2f.y = v1[1] / v1[2];

        // 右下角(src.cols,src.rows,1)
        v2[0] = src.cols;
        v2[1] = src.rows;
        v2[2] = 1;
        V2 = cv::Mat(3, 1, CV_64FC1, v2);
        V1 = cv::Mat(3, 1, CV_64FC1, v1);
        V1 = H * V2;
        rightBottomPoint2f.x = v1[0] / v1[2];
        rightBottomPoint2f.y = v1[1] / v1[2];
    }

    // 图像变换
    cv::Mat imageTransform1;
    cv::warpPerspective(rightImageMat,                                          // 源图
                        imageTransform1,                                        // 变换后的输出图
                        m,                                                      // 变换矩阵
                        cv::Size(MAX(rightTopPoint2f.x, rightBottomPoint2f.x),  // 输出图像宽度
                                 leftImageMat.rows));                           // 输出图像高度
    cv::namedWindow("imageTransform1", cv::WINDOW_NORMAL);
    cv::resizeWindow("imageTransform1", cv::Size(400, 300));
    cv::imshow("imageTransform1", imageTransform1);

    // 创建拼接后的图
    int resultWidth = imageTransform1.cols;
    int resultHeight = rightImageMat.rows;
    if(imageTransform1.cols < leftImageMat.cols)
    {
        resultWidth = leftImageMat.cols;
    }
    if(imageTransform1.rows < leftImageMat.rows)
    {
        resultHeight = leftImageMat.rows;
    }
    cv::Mat resultMat(resultHeight, resultWidth, CV_8UC3);
    resultMat.setTo(0);

    // 开始拷贝
    LOG << imageTransform1.cols << imageTransform1.rows;
    LOG << "copy to";
    LOG << resultMat.cols << resultMat.rows;
    imageTransform1.copyTo(resultMat(cv::Rect(0, 0, imageTransform1.cols, imageTransform1.rows)));
    LOG << rightImageMat.cols << rightImageMat.rows;
    LOG << "copy to";
    LOG << resultMat.cols << resultMat.rows;
    leftImageMat.copyTo(resultMat(cv::Rect(0, 0, leftImageMat.cols, leftImageMat.rows)));

    cv::namedWindow("rightImageMat", cv::WINDOW_NORMAL);
    cv::resizeWindow("rightImageMat", cv::Size(400, 300));
    cv::imshow("rightImageMat", rightImageMat);

    cv::namedWindow("leftImageMat", cv::WINDOW_NORMAL);
    cv::resizeWindow("leftImageMat", cv::Size(400, 300));
    cv::imshow("leftImageMat", leftImageMat);


    cv::namedWindow("resultMat", cv::WINDOW_NORMAL);
    cv::resizeWindow("resultMat", cv::Size(400, 300));
    cv::imshow("resultMat", resultMat);

    cv::waitKey(0);
}
 

入坑

入坑一:cv::Mat.copyTo函数崩溃

问题

  cv::Mat的copyTo函数崩溃

原因

  被复制的源文件mat和函数里面的目标mat都需要宽高,类型相等。

解决

  是因为计算最终的图像错误导致的,纠正逻辑代码。
  在这里插入图片描述

From:https://www.cnblogs.com/qq21497936/p/18392520
本文地址: http://shuzixingkong.net/article/1663
0评论
提交 加载更多评论
其他文章 LaViT:这也行,微软提出直接用上一层的注意力权重生成当前层的注意力权重 | CVPR 2024
Less-Attention Vision Transformer利用了在多头自注意力(MHSA)块中计算的依赖关系,通过重复使用先前MSA块的注意力来绕过注意力计算,还额外增加了一个简单的保持对角性的损失函数,旨在促进注意力矩阵在表示标记之间关系方面的预期行为。该架构你能有效地捕捉了跨标记的关联,
LaViT:这也行,微软提出直接用上一层的注意力权重生成当前层的注意力权重 | CVPR 2024 LaViT:这也行,微软提出直接用上一层的注意力权重生成当前层的注意力权重 | CVPR 2024 LaViT:这也行,微软提出直接用上一层的注意力权重生成当前层的注意力权重 | CVPR 2024
写在临近四十岁的年龄
人生有那么一首诗,往往当你拥有他的时候,你没有读懂他,可是当你读懂他的时候,你却失去了他,这首诗就是青春。“一寸光阴一寸金,寸金难买寸光阴”,学生时代的作文中,已经被我们用烂了的词汇,时至今日,终于才深刻理解这句话的重要意义。光阴的确是无价的,一旦错过却无法追回,一寸光阴又何止一寸金呢。古人说过“三
.NET 8.0 前后分离快速开发框架
前言 大家好,推荐一个.NET 8.0 为核心,结合前端 Vue 框架,实现了前后端完全分离的设计理念。它不仅提供了强大的基础功能支持,如权限管理、代码生成器等,还通过采用主流技术和最佳实践,显著降低了开发难度,加快了项目交付速度。 如果你需要一个高效的开发解决方案,本框架能帮助大家轻松应对挑战,实
.NET 8.0 前后分离快速开发框架 .NET 8.0 前后分离快速开发框架 .NET 8.0 前后分离快速开发框架
《花100块做个摸鱼小网站! 》第五篇—通过xxl-job定时获取热搜数据
⭐️基础链接导航⭐️ 服务器 → ☁️ 阿里云活动地址 看样例 → &#128031; 摸鱼小网站地址 学代码 → &#128187; 源码库地址 一、前言 我们已经成功实现了一个完整的热搜组件,从后端到前端,构建了这个小网站的核心功能。接下来,我们将不断完善其功能,使其更加美观和实用。今天的主题是
《花100块做个摸鱼小网站! 》第五篇—通过xxl-job定时获取热搜数据 《花100块做个摸鱼小网站! 》第五篇—通过xxl-job定时获取热搜数据 《花100块做个摸鱼小网站! 》第五篇—通过xxl-job定时获取热搜数据
租约机制详解
概述 租约机制指在租约期限内,拥有租约的节点有权利操作一些预设好的对象,具体如下 租约是由授权者授予的一段时间内的承诺 授权者一旦发出租约,则无论接受方是否收到,也无论后续接收方处于何种状态,只要租约不过期,授权者就得遵守承诺,按承诺的时间和内容执行。 接收方在有效期内可以使用授权者的租约,如果租约
肉夹馍(Rougamo)4.0.1 异步方法变量调试修复与IoC系列扩展
肉夹馍(https://github.com/inversionhourglass/Rougamo),一款编译时AOP组件,无需在应用启动时进行初始化,也无需繁琐的配置;支持所有种类方法(同步和异步、静态和实例、构造方法/属性/普通方法);提供了简单易上手的Attribute应用方式,同时还提供了类
肉夹馍(Rougamo)4.0.1 异步方法变量调试修复与IoC系列扩展
HTB-Runner靶机笔记
HTB-Runner靶机笔记 概述 Runner是HTB上一个中等难度的Linux靶机,它包含以下teamcity漏洞(CVE-2023-42793)该漏洞允许用户绕过身份验证并提取API令牌。以及docker容器逃逸CVE-2024-21626,进行提权操作 Runner靶机地址:https://
HTB-Runner靶机笔记 HTB-Runner靶机笔记 HTB-Runner靶机笔记
MySQL服务端innodb_buffer_pool_size配置参数
innodb_buffer_pool_size是什么? innodb_buffer_pool是 InnoDB 缓冲池,是一个内存区域保存缓存的 InnoDB 数据为表、索引和其他辅助缓冲区。innodb_buffer_pool_size 是这个缓冲池的大小,默认128M(即134217728 byt