首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

最常用集合 - arraylist详解

编程知识
2024年08月30日 21:30

ArrayList介绍

ArrayList实现了List接口,是顺序容器,即元素存放的数据与放进去的顺序相同,允许放入null元素,底层通过数组实现。除该类未实现同步外,其余跟Vector大致相同。每个ArrayList都有一个容量(capacity),表示底层数组的实际大小,容器内存储元素的个数不能多于当前容量。当向容器中添加元素时,如果容量不足,容器会自动增大底层数组的大小。

ArrayList 在JDK1.8 前后的实现区别:

  • JDK1.7:像饿汉式,直接创建一个初始容量为10的数组
  • JDK1.8:像懒汉式,一开始创建一个长度为0的数组,当添加add第一个元素时再创建一个初始容量为10的数组

size(), isEmpty(), get(), set()方法均能在常数时间内完成,add()方法的时间开销跟插入位置有关,addAll()方法的时间开销跟添加元素的个数成正比。其余方法大都是线性时间。

为追求效率,ArrayList没有实现同步(synchronized),如果需要多个线程并发访问,用户可以手动同步,也可使用Vector替代

底层原理介绍

底层数据结构

//集合默认容量10;
private static final int DEFAULT_CAPACITY = 10;

//空数组
private static final Object[] EMPTY_ELEMENTDATA = {};

//默认容量的空的数组
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

// 集合中真实存储数据的数组
transient Object[] elementData; // non-private to simplify nested class access

 //集合中元素的个数,注意,这里不是数组的长度
private int size;

构造方法

public ArrayList() {
    //将属性中默认的空的数组赋值给了 存储数据的变量
    this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
    
    //等价于this.elementData = {}
}

//有参构造
public ArrayList(int initialCapacity) {
    //给定初始容量,就创建一个这个容量大小的数组
   if (initialCapacity > 0) {
        this.elementData = new Object[initialCapacity];
   } else if (initialCapacity == 0) {
        //如果传递的是0 就将{}赋值给elementData 
        this.elementData = EMPTY_ELEMENTDATA;
        //等价于this.elementData = {}
   } else {
        //如果传递的是负数,就会抛异常
        //java.lang.IllegalArgumentException: Illegal Capacity: -20
        throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity);
   }
}

自动扩容

每当向数组中添加元素时,都要去检查添加后元素的个数是否会超出当前数组的长度,如果超出,数组将会进行扩容,以满足添加数据的需求。

private void grow(int minCapacity) {
    // overflow-conscious code
    int oldCapacity = elementData.length;
    
    //动态扩容,扩容为原来的1.5倍,右移一位即原来的一半
    int newCapacity = oldCapacity + (oldCapacity >> 1);
    if (newCapacity - minCapacity < 0)
        newCapacity = minCapacity;
        
    //判断新容量是否会超过最大限制
    if (newCapacity - MAX_ARRAY_SIZE > 0)
        newCapacity = hugeCapacity(minCapacity);
    // minCapacity is usually close to size, so this is a win:    
    elementData = Arrays.copyOf(elementData, newCapacity);//数组的复制操作
}

扩容方法流程:

  1. 首先获取数组长度

  2. 将数组新容量扩容为原数组容量的1.5倍取整

  3. 将新容量和当前所需最小容量做对比,(最小容量是在add方法中得到的,minCapacity=size+1,即原数组中元素数量加1),而newCapacity=elementData.length*1.5,一般来说肯定是1.5倍比+1的大。但是这里要考虑当数组为空时的情况。数组为空又分为两种情况:①指定了数组容量为0 ②没有显式指定数组大小。

    • 当数组为空时进行插入操作,因为元素个数size为0,数组容量也为0,那么就会进行扩容操作,对于空数组,扩容1.5倍后你的容量还是为0,那么此时就会小于我所需的最小容量(也就是1),此时会令 newCapacity = minCapacity;

    • 而对于①,传入到grow方法的minCapacity = 1 ,因此它扩容后的容量就是1

    • 对于②,在ensureCapacityInternal方法中,使minCapacity = DEFAULT_CAPACITY(10),因此扩容后的数组长度就是DEFAULT_CAPACITY,也就是10。

      • 原因在于在有参构造方法中使this.elementData = EMPTY_ELEMENTDATA;(无参构造方法中this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;),此时在ensureCapacityInternal方法中会对this.elementData进行判断,因此对于①,传入到grow方法的minCapacity = 1;而对于②,minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity),即minCapacity = 10
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
    //比较大小,此时 minCapacity = 10
    minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
  1. 最后判断新容量大小是否大于默认数组的最大值(Integer.MAX_VALUE-8),则赋予它整型的最大值
  2. 扩容之后,会调用Arrays.copyOf()方法对数组进行拷贝。

实际上,对数组的copy需要创建一个新数组,并对原数组进行复制的操作,这会造成资源消耗。因此在添加大量元素前,建议使用ensureCapacity操作先增加 ArrayList 实例的容量,先进行稍少量数组数据的copy,再添加元素

add(), addAll()

add 操作可能会导致capacity不足,因此在添加元素之前,都需要进行剩余空间检查,如果需要则自动扩容。扩容操作最终是通过grow()方法完成的。

假设使用的是空参构造,第一次添加元素 add(1)

public boolean add(E e) {
    //确保内部容量 0 + 1
    ensureCapacityInternal(size + 1);  // Increments modCount!!
    //将要添加的元素添加到数组有数据的下一个位置
    elementData[size++] = e;
    return true;
}

private void ensureCapacityInternal(int minCapacity) {//第一次添加: minCapacity = 1
    //有参构造的情况:new Object[10] != {},不会执行if内的语句。即使有参构造给的是0,也不会执行,因为此时elementData = EMPTY_ELEMENTDATA,不等于DEFAULTCAPACITY_EMPTY_ELEMENTDATA
    // 无参构造的情况下:{} = {} 会执行Math.max语句
    if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
    //比较大小,此时 minCapacity = 10
        minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
    }
    //明确数组的容量
    ensureExplicitCapacity(minCapacity);
}

private void ensureExplicitCapacity(int minCapacity) {
    modCount++;//记录当前集合操作的次数
    // overflow-conscious code
    if (minCapacity - elementData.length > 0)
        grow(minCapacity);//扩容操作
}

addAll()方法能够一次添加多个元素,根据位置不同也有两个版本,

  • 在末尾添加的addAll(Collection<? extends E> c)方法,

  • 从指定位置开始插入的addAll(int index, Collection<? extends E> c)方法

跟add()方法类似,在插入之前也需要进行空间检查,如果需要则自动扩容;如果从指定位置插入,也会存在移动元素的情况。 addAll()的时间复杂度不仅跟插入元素的多少有关,也跟插入的位置相关。

set()

由于底层是数组,因此set()方法就是直接对数组的指定位置赋值。

public E set(int index, E element) {
    rangeCheck(index);//下标越界检查
    E oldValue = elementData(index);
    elementData[index] = element;//赋值到指定位置,复制的仅仅是引用
    return oldValue;
}

get()

由于底层是数组,get()方法也是直接从数组索引处获取值,唯一要注意的是由于底层数组是Object[],得到元素后需要进行类型转换。

public E get(int index) {
    rangeCheck(index);
    return (E) elementData[index];//注意类型转换
}

remove方法

remove()方法也有两个

  • remove(int index)删除指定位置的元素,

  • remove(Object o)删除第一个满足o.equals(elementData[index])的元素。

删除操作是add()操作的逆过程,会需要将删除点之后的元素向前移动一个位置

public E remove(int index) {
    rangeCheck(index);

    modCount++;
    E oldValue = elementData(index);

    int numMoved = size - index - 1;
    if (numMoved > 0)
    //判断要删除的索引是否是最后一个,,如果不是最后一个,就需要进行数组的复制操作
        System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        //然后把最后一个元素置为空,让GC起作用
    elementData[--size] = null; // clear to let GC do its work

    return oldValue;
}

trimToSize()

将底层数组的容量调整为当前列表保存的实际元素的大小的功能

 /**
     * Trims the capacity of this <tt>ArrayList</tt> instance to be the
     * list's current size.  An application can use this operation to minimize
     * the storage of an <tt>ArrayList</tt> instance.
     */
    public void trimToSize() {
        modCount++;
        if (size < elementData.length) {
            elementData = (size == 0)
              ? EMPTY_ELEMENTDATA
              : Arrays.copyOf(elementData, size);
        }
    }

indexOf(), lastIndexOf()

获取元素的第一次出现的index:

public int indexOf(Object o) {
        if (o == null) {
            for (int i = 0; i < size; i++)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = 0; i < size; i++)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

获取元素的最后一次出现的index:

public int lastIndexOf(Object o) {
        if (o == null) {
            for (int i = size-1; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = size-1; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

遍历时删除(添加)常见陷阱

for循环遍历list

删除某个元素后,list的大小发生了变化,而索引也在变化,所以会导致遍历的时候漏掉某些元素。比如当删除第1个元素后,继续根据索引访问第2个元素时,因为删除的关系后面的元素都往前移动了一位,所以实际访问的是第3个元素。因此,这种方式可以用在删除特定的一个元素时使用,但不适合循环删除多个元素时使用。

for(int i=0;i<list.size();i++){
    if(list.get(i).equals("del"))
        list.remove(i);
}

解决办法:

//从list最后一个元素开始遍历

//从list最后一个元素开始遍历
for(int i=list.size()-1;i>+0;i--){
    if(list.get(i).equals("del"))
        list.remove(i);
}

增强for循环

删除元素后继续循环会抛异常java.util.ConcurrentModificationException,因为元素在使用的时候发生了并发的修改

for(String x:list){
    if(x.equals("del"))
        list.remove(x);
}

解决方法:但只能删除一个"del"元素

//解决:删除完毕马上使用break跳出,则不会触发报错
for(String x:list){
    if (x.equals("del")) {
         list.remove(x);
         break;
    }
}

iterator遍历

这种方式可以正常的循环及删除。但要注意的是,使用iterator的remove方法,如果用list的remove方法同样会报上面提到的ConcurrentModificationException错误。

Iterator<String> it = list.iterator();
while(it.hasNext()){
    String x = it.next();
    if(x.equals("del")){
        it.remove();
    }
}

FailFast机制

上面提到的ConcurrentModificationException异常,都是有这个机制的存在,通过记录modCount参数来实现。在面对并发的修改时,迭代器很快就会完全失败,而不是冒着在将来某个不确定时间发生任意不确定行为的风险。

fail-fast 机制是java集合(Collection)中的一种错误机制。当多个线程对同一个集合的内容进行操作时,就可能会产生fail-fast事件。例如:当某一个线程A通过iterator去遍历某集合的过程中,若该集合的内容被其他线程所改变了;那么线程A遍历集合时,即出现expectedModCount != modCount 时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。

if (modCount != expectedModCount)
    throw new ConcurrentModificationException();

fail-fast 机制并不保证在不同步的修改下抛出异常,他只是尽最大努力去抛出,所以这种机制一般仅用于检测 bug

解决 fail-fast的解决方案:

  1. 在遍历过程中所有涉及到改变modCount值得地方全部加上synchronized或者直接使用Collections.synchronizedList,这样就可以解决(实际上Vector结构就是这样实现的)。但是不推荐,因为增删造成的同步锁可能会阻塞遍历操作。
List<Integer> arrsyn = Collections.synchronizedList(arr);
  1. 使用CopyOnWriteArrayList来替换ArrayList。推荐使用该方案。CopyOnWriteArrayList是兼顾了并发的线程安全

ArrayList和Vector和CopyOnWriteArrayList和LinkedList

继承关系结构图:

ArrayList和Vector和CopyOnWriteArrayList的区别:

  • ArrayList非线程安全的,如果需要考虑到线程安全问题,那么可以使用Vector和CopyOnWriteArrayList;

  • Vector和CopyOnWriteArrayList的区别是:Vector增删改查方法都加了synchronized,保证同步,但是每个方法执行的时候都要去获得锁,性能就会大大下降,而CopyOnWriteArrayList 只是在增删改上加锁,但是读不加锁,在读方面的性能就好于Vector,CopyOnWriteArrayList支持读多写少的并发情况。

ArrayList和LinkedList的区别:

  • ArrayList基于动态数组实现;

  • LinkedList基于链表实现。对于随机index访问的get和set方法,ArrayList的速度要优于LinkedList。因为ArrayList直接通过数组下标直接找到元素;LinkedList要移动指针遍历每个元素直到找到为止。

  • 对于 add(int index, E element),remove(int index)的操作:LinkedList 和 ArrayList的时间复杂度一样,都是O(n);虽然时间复杂度一样,但实际执行时间是不一样的,如下代码所示:

    List<Integer> a = Lists.newArrayList();
    List<Integer> b = Lists.newLinkedList();
    
    Random r = new Random();
    a.add(0);
    b.add(0);
    
    long startTime = System.currentTimeMillis();
    for (int i = 0; i <= 20000; i++) {
        int p = r.nextInt(a.size());
        a.add(p, 0);
    }
    System.out.println(System.currentTimeMillis() - startTime);// 6
    
    startTime = System.currentTimeMillis();
    for (int i = 0; i <= 20000; i++) {
        int p = r.nextInt(b.size());
        b.add(p, 0);
    }
    System.out.println(System.currentTimeMillis() - startTime);// 205
    

    虽然ArrayList在索引位置新增或删除数据时需要移动数据(往前移、往后移),但是在连续内存中的块的数据,是可以操作整片内存的。而LinkedList需要一个一个的先查找到具体索引位置的元素,所以在寻址方面数组的效率高于链表。

  • 对于add新增元素:理论上来说LinkedList的速度(O(1))要优于ArrayList(O(n)),因为ArrayList在新增和删除元素时,可能会扩容和复制数组;LinkedList只需要修改指针即可。但在实际测试中,在数据量小的情况下,两者执行时间几乎一致;增大数据量后,就能看出区别了,如下代码所示:

    List<Integer> a = Lists.newArrayList();
    List<Integer> b = Lists.newLinkedList();
    
    a.add(0);
    b.add(0);
    
    long startTime = System.currentTimeMillis();
    for (int i = 0; i <= 2000000; i++) {
        int p = r.nextInt(a.size());
        a.add(0);
    }
    System.out.println(System.currentTimeMillis() - startTime);// 34
    
    startTime = System.currentTimeMillis();
    for (int i = 0; i <= 2000000; i++) {
        int p = r.nextInt(b.size());
        b.add(0);
    }
    System.out.println(System.currentTimeMillis() - startTime);// 271
    

    这是因为LinkedList 存在一定的性能问题

关于作者

来自一线程序员Seven的探索与实践,持续学习迭代中~

本文已收录于我的个人博客:https://www.seven97.top

公众号:seven97,欢迎关注~

From:https://www.cnblogs.com/seven97-top/p/18389611
本文地址: http://shuzixingkong.net/article/1599
0评论
提交 加载更多评论
其他文章 使用 setenv 配置文件管理 Tomcat 的自定义环境变量
1、背景描述 有时候,我们会在 catalina.bat 或 catalina.sh 文件中,自定义一些环境变量,例如额外指定 JDK 路径或设置 JVM 参数。 实际上,直接在 catalina.bat 或 catalina.sh 文件中,自定义环境变量的做法,是不规范的。 因为在对 Tomcat
使用 setenv 配置文件管理 Tomcat 的自定义环境变量 使用 setenv 配置文件管理 Tomcat 的自定义环境变量 使用 setenv 配置文件管理 Tomcat 的自定义环境变量
四,分析Spring Boot底层机制(Tomcat 启动分析+Spring容器初始化+Tomcat如何关联 Spring 容器) 以及个人编写启动 Tomcat
四,分析Spring Boot底层机制(Tomcat 启动分析+Spring容器初始化+Tomcat如何关联 Spring 容器) 以及个人编写启动 Tomcat @目录四,分析Spring Boot底层机制(Tomcat 启动分析+Spring容器初始化+Tomcat如何关联 Spring 容器)
四,分析Spring Boot底层机制(Tomcat 启动分析+Spring容器初始化+Tomcat如何关联 Spring 容器) 以及个人编写启动 Tomcat 四,分析Spring Boot底层机制(Tomcat 启动分析+Spring容器初始化+Tomcat如何关联 Spring 容器) 以及个人编写启动 Tomcat 四,分析Spring Boot底层机制(Tomcat 启动分析+Spring容器初始化+Tomcat如何关联 Spring 容器) 以及个人编写启动 Tomcat
[kubernetes]使用kubeadm和containerd部署kubernetes
在centos 7上使用kubeadm部署v1.25版本的k8s,容器运行时采用containerd
Windows10使用MSYS2和VS2019编译FFmpeg详解
本文详解介绍了在windows10下,使用VS2019社区版编译ffmpeg的环境搭建、编译过程,以及期间遇到的各种问题。
Windows10使用MSYS2和VS2019编译FFmpeg详解 Windows10使用MSYS2和VS2019编译FFmpeg详解 Windows10使用MSYS2和VS2019编译FFmpeg详解
【漏洞分析】OSN 代币攻击事件:一笔资金伪造多个分红大户
背景 OSN 是一种 fee on transfer 代币,会根据用户分红账户的余额对用户发放分红。攻击者利用漏洞增发分红账户的余额,随后触发分红机制完成获利。 OSN:https://bscscan.com/address/0x810f4c6ae97bcc66da5ae6383cc31bd3670
【漏洞分析】OSN 代币攻击事件:一笔资金伪造多个分红大户 【漏洞分析】OSN 代币攻击事件:一笔资金伪造多个分红大户 【漏洞分析】OSN 代币攻击事件:一笔资金伪造多个分红大户
.Net 5.0 WebAPI 发布至 Linux 系统
本文先安装 .net 5.0 的环境,再创建一个示例项目并发布至 CentOS 上,同时列明了一些注意的点;最后将 dotnet 命令添加到系统自启动服务。
.Net 5.0 WebAPI 发布至 Linux 系统 .Net 5.0 WebAPI 发布至 Linux 系统 .Net 5.0 WebAPI 发布至 Linux 系统
NSmartProxy:一款.NET开源、跨平台的内网穿透工具
前言 今天大姚给大家分享一款.NET开源、免费(MIT License)、跨平台的内网穿透工具,采用.NET Core的全异步模式打造:NSmartProxy。 内网穿透工具介绍 内网穿透工具是一种能够允许用户从互联网上的任何地方安全地访问并管理处于内网(如家庭网络、公司局域网等)中的设备的工具。
NSmartProxy:一款.NET开源、跨平台的内网穿透工具 NSmartProxy:一款.NET开源、跨平台的内网穿透工具 NSmartProxy:一款.NET开源、跨平台的内网穿透工具
一个操作系统的设计与实现——第21章 高级可编程中断控制器
21.1 什么是高级可编程中断控制器 我们已经使用过型号为8259A的可编程中断控制器(Programmable Interrupt Controller,PIC)。在单CPU计算机中,中断的处理相对简单:所有的外设和CPU都连接在PIC上即可。然而,如果计算机中不止一个CPU,情况就会变得复杂起来
一个操作系统的设计与实现——第21章 高级可编程中断控制器