首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

Go 互斥锁 Mutex 源码分析 (一)

编程知识
2024年08月23日 14:41

原创文章,欢迎转载,转载请注明出处,谢谢。


0. 前言

锁作为并发编程中的关键一环,是应该要深入掌握的。

1. 锁

1.1 示例

实现锁很简单,示例如下:

var global int

func main() {
	var mu sync.Mutex
	var wg sync.WaitGroup	

	for i := 0; i < 2; i++ {
		wg.Add(1)
		go func(i int) {
			defer wg.Done()
			mu.Lock()
			global++
			mu.Unlock()
		}(i)
	}

	wg.Wait()
	fmt.Println(global)
}

输出:

2

在 goroutine 中给全局变量 global 加锁,实现并发顺序增加变量。其中,sync.Mutex.Lock() 对变量/临界区加锁,sync.Mutex.Unlock() 对变量/临界区解锁。

1.2 sync.Mutex

我们看 sync.Mutex 互斥锁结构:

type Mutex struct {
	state int32
	sema  uint32
}

其中,state 表示锁的状态,sema 表示信号量。

进入 sync.Mutex.Lock() 查看加锁的方法。

1.2.1 sync.Mutex.Lock()

func (m *Mutex) Lock() {
	// Fast path: grab unlocked mutex.
	if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
		if race.Enabled {
			race.Acquire(unsafe.Pointer(m))
		}
		return
	}
	// Slow path (outlined so that the fast path can be inlined)
	m.lockSlow()
}

首先进入 Fast path 逻辑,原子 CAS 操作比较锁状态 m.state 和 0,如果相等则更新当前锁为已加锁状态。这里锁标志位如下:

image

从低(右)到高(左)的三位表示锁状态/唤醒状态/饥饿状态:

const (
	mutexLocked = 1 << iota // mutex is locked
	mutexWoken
	mutexStarving
)

标志位初始值为 0,1 表示状态生效。

前三位之后的位数表示排队等待锁的 goroutine 数目,总共可以允许 1<<(32-3) 个 goroutine 等待锁。

这里假设有两个 goroutine G1 和 G2 抢占锁,其中 G1 通过 Fast path 获取锁,将锁的状态置为 1。这时候 G2 未获得锁,进入 Slow path

func (m *Mutex) lockSlow() {
	var waitStartTime int64
	starving := false
	awoke := false
	iter := 0
	old := m.state
	for {
		// step1: 进入自旋
		if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
			if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
				atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
				awoke = true
			}
			runtime_doSpin()
			iter++
			old = m.state
			continue
		}

        ...
    }
}

Slow path 的代码量不大,但涉及状态转换很复杂,不容易看懂。这里拆成每个步骤,根据不同场景分析具体源码。

进入 Mutex.lockSlow(),初始化各个状态位,将当前锁状态赋给变量 old,进入 for 循环,执行第一步自旋逻辑。自旋会独占 CPU,让 CPU 空跑,但是减少了频繁切换 goroutine 带来的内存/时间消耗。如果使用的适当,会节省 CPU 开销,使用的不适当,会造成 CPU 浪费。这里进入自旋是很严苛的,通过三个条件判断能否自旋:

  1. 当前锁是普通模式才能进入自旋。
  2. runtime.sync_runtime_canSpin 需要返回 true:
    • 当前 goroutine 进入自旋的次数小于 4 次;
    • goroutine 运行在多 CPU 的机器上;
    • 当前机器上至少存在一个正在运行的处理器 P 并且处理的运行队列为空;

假设 G2 可以进入自旋,运行 runtime_doSpin()

# src/runtime/lock_futex.go
const active_spin_cnt = 30

# src/runtime/proc.go
//go:linkname sync_runtime_doSpin sync.runtime_doSpin
//go:nosplit
func sync_runtime_doSpin() {
	procyield(active_spin_cnt)
}

# src/runtime/asm_amd64.s
TEXT runtime·procyield(SB),NOSPLIT,$0-0
	MOVL	cycles+0(FP), AX
again:
	PAUSE
	SUBL	$1, AX
	JNZ	again
	RET

自旋实际上是 CPU 执行了 30 次 PAUSE 指令。

自旋是在等待,等待锁释放的过程。假设在自旋期间 G1 已释放锁,更新 m.state 为 0。那么,在 G2 自旋逻辑中 old = m.state 将更新 old 为 0。继续往下看,for 循环中做了什么。

func (m *Mutex) lockSlow() {
	...
	for {
        if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
			...
		}

        // step2: 更新 new,这里 new 为 0
        new := old

		// step2: 继续更新 new
        // -      如果锁为普通锁,更新锁状态为已锁。如果锁为饥饿锁,跳过饥饿锁更新。
        // -      这里更新锁为 1
		if old&mutexStarving == 0 {
			new |= mutexLocked
		}

        // step2:继续更新 new
        // -      如果锁为已锁或饥饿的任何一种,则更新 new 的 goroutine 排队等待位
        // -      这里锁为已释放,new 为 1
		if old&(mutexLocked|mutexStarving) != 0 {
			new += 1 << mutexWaiterShift
		}

        // step2: 继续更新 new
        // -      如果 goroutine 处于饥饿状态,并且当前锁是已锁的,更新 new 为饥饿状态
        // -      这里锁为已释放,new 为 1
        if starving && old&mutexLocked != 0 {
			new |= mutexStarving
		}

        // step2: 继续更新 new
        // -      如果当前 goroutine 是唤醒的,重置唤醒位为 0
        // -      goroutine 不是唤醒的,new 为 1
        if awoke {
			// The goroutine has been woken from sleep,
			// so we need to reset the flag in either case.
			if new&mutexWoken == 0 {
				throw("sync: inconsistent mutex state")
			}
			new &^= mutexWoken
		}

        // step3: CAS 比较 m.state 和 old,如果一致则更新 m.state 到 new
        // -      这里 m.state = 0,old = 0,new = 1
        // -      更新 m.state 为 new,当前 goroutine 获得锁
        if atomic.CompareAndSwapInt32(&m.state, old, new) {
            // 如果更新锁之前的状态不是饥饿或已锁,表示当前 goroutine 已获得锁,跳出循环。
			if old&(mutexLocked|mutexStarving) == 0 {
				break // locked the mutex with CAS
			}
            ...
        }
    }
}

这里将自旋后的逻辑简化为两步,更新锁的期望状态 new 和通过原子 CAS 操作更新锁。这里的场景不难,我们可以简化上述流程为如下示意图:

image

2. 小结

本文介绍了 Go 互斥锁的基本结构,并且给出一个抢占互斥锁的基本场景,通过场景从源码角度分析互斥锁。


From:https://www.cnblogs.com/xingzheanan/p/18376083
本文地址: http://shuzixingkong.net/article/1382
0评论
提交 加载更多评论
其他文章 WPF 模仿前端大佬写一个Hover效果
先看一下效果吧: 原博主的地址:【动画进阶】神奇的卡片 Hover 效果与 Blur 的特性探究 - ChokCoco - 博客园 (cnblogs.com) 原效果是一个css效果,我们采用WPF的方式模仿一下 因为技术有限,没有原博主的那么好看,毕竟盗版永远比不过原版... 然后这里看一下盗版的
WPF 模仿前端大佬写一个Hover效果 WPF 模仿前端大佬写一个Hover效果 WPF 模仿前端大佬写一个Hover效果
JuiceFS 在多云架构中加速大模型推理
在大模型的开发与应用中,数据预处理、模型开发、训练和推理构成四个关键环节。本文将重点探讨推理环节。在之前的博客中,社区用户 BentoML 和贝壳的案例提到了使用 JuiceFS 社区版来提高模型加载的效率。本文将结合我们的实际经验,详细介绍企业版在此场景下的优势。 下图是一个典型的大模型推理服务的
JuiceFS 在多云架构中加速大模型推理 JuiceFS 在多云架构中加速大模型推理 JuiceFS 在多云架构中加速大模型推理
AI的那些名词
AI 是什么? Artificial Intelligence,即人工智能,1956年于Dartmouth学会上提出,一种旨在以类似人类反应的方式对刺激做出反应并从中学习的技术,其理解和判断水平通常只能在人类的专业技能中找到。AI因具备自主学习和认知能力,可进行自我调整和改进,从而应对更加复杂的任务
《数据资产管理核心技术与应用》读书笔记-第五章:数据服务(一)
《数据资产管理核心技术与应用》是清华大学出版社出版的一本图书,全书共分10章,第1章主要让读者认识数据资产,了解数据资产相关的基础概念,以及数据资产的发展情况。第2~8章主要介绍大数据时代数据资产管理所涉及的核心技术,内容包括元数据的采集与存储、数据血缘、数据质量、数据监控与告警、数据服务、数据权限
《数据资产管理核心技术与应用》读书笔记-第五章:数据服务(一) 《数据资产管理核心技术与应用》读书笔记-第五章:数据服务(一) 《数据资产管理核心技术与应用》读书笔记-第五章:数据服务(一)
平衡搜索树-AVL树 图文详解 (万字长文)
目录AVL树AVL树的概念AVL树节点的定义:AVL树的插入基本情况分析平衡因子对应的操作旋转操作分析需要旋转的情况结论4种旋转操方法与特征6种双旋平衡因子特征代码实现四种旋转实现插入操作实现树高度与是否平衡树判断实现其他实现插入验证BenchMark环境测试工具和方法测试结果: AVL树 AVL树
平衡搜索树-AVL树  图文详解  (万字长文) 平衡搜索树-AVL树  图文详解  (万字长文) 平衡搜索树-AVL树  图文详解  (万字长文)
一文讲清楚static关键字
static能修饰的地方 静态变量 静态变量: 又称为类变量,也就是说这个变量属于类的,类所有的实例都共享静态变量,可以直接通过类名来访问它;静态变量在内存中只存在一份。 实例变量: 每创建一个实例就会产生一个实例变量,它与该实例同生共死。 静态方法 静态方法在类加载的时候就存在了,它不依赖于任何实
线性dp:编辑距离
编辑距离 本题与力扣72.编辑距离题意一样,阅读完本文可以尝试leetcode72. 力扣题目链接 题目叙述 输入两个字符串a,b。输出从字符串a修改到字符串b时的编辑距离 输入 NOTV LOVER 输出 4 题目解释: 动态规划思路 这个问题显然是一个最优解问题,我们可以考虑动态规划的思路,那么
线性dp:编辑距离 线性dp:编辑距离 线性dp:编辑距离
关于对 Tomcat 进行小版本升级的快速解决方案
1、背景描述 原来的 Tomcat 在部署时,使用的是最新的版本 9.0.40 。 经过一段时间后,在原来的 Tomcat 版本中,发现存在漏洞。 因此,需要将旧版本(9.0.40)升级到没有漏洞的新版本(9.0.93)。 2、查看Tomcat的版本信息 如上图所示,在 tomcat 的 bin 目
关于对 Tomcat 进行小版本升级的快速解决方案 关于对 Tomcat 进行小版本升级的快速解决方案 关于对 Tomcat 进行小版本升级的快速解决方案