首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

基于MindSpore实现BERT对话情绪识别

编程知识
2024年07月16日 13:38

本文分享自华为云社区《【昇思25天学习打卡营打卡指南-第二十四天】基于 MindSpore 实现 BERT 对话情绪识别》,作者:JeffDing。

模型简介

BERT全称是来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers),它是Google于2018年末开发并发布的一种新型语言模型。与BERT模型相似的预训练语言模型例如问答、命名实体识别、自然语言推理、文本分类等在许多自然语言处理任务中发挥着重要作用。模型是基于Transformer中的Encoder并加上双向的结构,因此一定要熟练掌握Transformer的Encoder的结构。

BERT模型的主要创新点都在pre-train方法上,即用了Masked Language Model和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation。

在用Masked Language Model方法训练BERT的时候,随机把语料库中15%的单词做Mask操作。对于这15%的单词做Mask操作分为三种情况:80%的单词直接用[Mask]替换、10%的单词直接替换成另一个新的单词、10%的单词保持不变。

因为涉及到Question Answering (QA) 和 Natural Language Inference (NLI)之类的任务,增加了Next Sentence Prediction预训练任务,目的是让模型理解两个句子之间的联系。与Masked Language Model任务相比,Next Sentence Prediction更简单些,训练的输入是句子A和B,B有一半的几率是A的下一句,输入这两个句子,BERT模型预测B是不是A的下一句。

BERT预训练之后,会保存它的Embedding table和12层Transformer权重(BERT-BASE)或24层Transformer权重(BERT-LARGE)。使用预训练好的BERT模型可以对下游任务进行Fine-tuning,比如:文本分类、相似度判断、阅读理解等。

对话情绪识别(Emotion Detection,简称EmoTect),专注于识别智能对话场景中用户的情绪,针对智能对话场景中的用户文本,自动判断该文本的情绪类别并给出相应的置信度,情绪类型分为积极、消极、中性。 对话情绪识别适用于聊天、客服等多个场景,能够帮助企业更好地把握对话质量、改善产品的用户交互体验,也能分析客服服务质量、降低人工质检成本。

安装mindnlp

pip install mindnlp

下面以一个文本情感分类任务为例子来说明BERT模型的整个应用过程。

import os

import mindspore
from mindspore.dataset import text, GeneratorDataset, transforms
from mindspore import nn, context

from mindnlp._legacy.engine import Trainer, Evaluator
from mindnlp._legacy.engine.callbacks import CheckpointCallback, BestModelCallback
from mindnlp._legacy.metrics import Accuracy

# prepare dataset
class SentimentDataset:
    """Sentiment Dataset"""

    def __init__(self, path):
        self.path = path
        self._labels, self._text_a = [], []
        self._load()

    def _load(self):
        with open(self.path, "r", encoding="utf-8") as f:
            dataset = f.read()
        lines = dataset.split("\n")
        for line in lines[1:-1]:
            label, text_a = line.split("\t")
            self._labels.append(int(label))
            self._text_a.append(text_a)

    def __getitem__(self, index):
        return self._labels[index], self._text_a[index]

    def __len__(self):
        return len(self._labels)

数据集

这里提供一份已标注的、经过分词预处理的机器人聊天数据集,来自于百度飞桨团队。数据由两列组成,以制表符(’\t’)分隔,第一列是情绪分类的类别(0表示消极;1表示中性;2表示积极),第二列是以空格分词的中文文本,如下示例,文件为 utf8 编码。

label–text_a

0–谁骂人了?我从来不骂人,我骂的都不是人,你是人吗 ?

1–我有事等会儿就回来和你聊

2–我见到你很高兴谢谢你帮我

这部分主要包括数据集读取,数据格式转换,数据 Tokenize 处理和 pad 操作。

wget https://baidu-nlp.bj.bcebos.com/emotion_detection-dataset-1.0.0.tar.gz -O emotion_detection.tar.gz
tar xvf emotion_detection.tar.gz

数据加载和数据预处理

新建 process_dataset 函数用于数据加载和数据预处理,具体内容可见下面代码注释。

import numpy as np

def process_dataset(source, tokenizer, max_seq_len=64, batch_size=32, shuffle=True):
    is_ascend = mindspore.get_context('device_target') == 'Ascend'

    column_names = ["label", "text_a"]
    
    dataset = GeneratorDataset(source, column_names=column_names, shuffle=shuffle)
    # transforms
    type_cast_op = transforms.TypeCast(mindspore.int32)
    def tokenize_and_pad(text):
        if is_ascend:
            tokenized = tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len)
        else:
            tokenized = tokenizer(text)
        return tokenized['input_ids'], tokenized['attention_mask']
    # map dataset
    dataset = dataset.map(operations=tokenize_and_pad, input_columns="text_a", output_columns=['input_ids', 'attention_mask'])
    dataset = dataset.map(operations=[type_cast_op], input_columns="label", output_columns='labels')
    # batch dataset
    if is_ascend:
        dataset = dataset.batch(batch_size)
    else:
        dataset = dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id),
                                                         'attention_mask': (None, 0)})

    return dataset

昇腾NPU环境下暂不支持动态Shape,数据预处理部分采用静态Shape处理:

from mindnlp.transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')

tokenizer.pad_token_id

dataset_train = process_dataset(SentimentDataset("data/train.tsv"), tokenizer)
dataset_val = process_dataset(SentimentDataset("data/dev.tsv"), tokenizer)
dataset_test = process_dataset(SentimentDataset("data/test.tsv"), tokenizer, shuffle=False)

print(next(dataset_train.create_tuple_iterator()))

模型构建

通过 BertForSequenceClassification 构建用于情感分类的 BERT 模型,加载预训练权重,设置情感三分类的超参数自动构建模型。后面对模型采用自动混合精度操作,提高训练的速度,然后实例化优化器,紧接着实例化评价指标,设置模型训练的权重保存策略,最后就是构建训练器,模型开始训练。

from mindnlp.transformers import BertForSequenceClassification, BertModel
from mindnlp._legacy.amp import auto_mixed_precision

# set bert config and define parameters for training
model = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=3)
model = auto_mixed_precision(model, 'O1')

optimizer = nn.Adam(model.trainable_params(), learning_rate=2e-5)

metric = Accuracy()
# define callbacks to save checkpoints
ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='bert_emotect', epochs=1, keep_checkpoint_max=2)
best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='bert_emotect_best', auto_load=True)

trainer = Trainer(network=model, train_dataset=dataset_train,
                  eval_dataset=dataset_val, metrics=metric,
                  epochs=5, optimizer=optimizer, callbacks=[ckpoint_cb, best_model_cb])
# start training
trainer.run(tgt_columns="labels")

模型验证

将验证数据集加再进训练好的模型,对数据集进行验证,查看模型在验证数据上面的效果,此处的评价指标为准确率。

evaluator = Evaluator(network=model, eval_dataset=dataset_test, metrics=metric)
evaluator.run(tgt_columns="labels")

模型推理

遍历推理数据集,将结果与标签进行统一展示。

dataset_infer = SentimentDataset("data/infer.tsv")

def predict(text, label=None):
    label_map = {0: "消极", 1: "中性", 2: "积极"}

    text_tokenized = Tensor([tokenizer(text).input_ids])
    logits = model(text_tokenized)
    predict_label = logits[0].asnumpy().argmax()
    info = f"inputs: '{text}', predict: '{label_map[predict_label]}'"
    if label is not None:
        info += f" , label: '{label_map[label]}'"
    print(info)
    
from mindspore import Tensor

for label, text in dataset_infer:
    predict(text, label)

自定义推理数据集

自己输入推理数据,展示模型的泛化能力。

predict("家人们咱就是说一整个无语住了 绝绝子叠buff")

点击关注,第一时间了解华为云新鲜技术~

 

From:https://www.cnblogs.com/huaweiyun/p/18305189
本文地址: http://www.shuzixingkong.net/article/114
0评论
提交 加载更多评论
其他文章 ComfyUI进阶:Comfyroll插件 (一)
ComfyUI进阶:Comfyroll插件 (一)前言:学习ComfyUI是一场持久战,而Comfyroll Studio 是一款功能强大的自定义节点集合,专为 ComfyUI 用户打造,旨在提供更加丰富和专业的图像生成与编辑工具。借助这些节点,用户可以在静态图像的精细调整和动态动画的复杂构建方面进
ComfyUI进阶:Comfyroll插件 (一) ComfyUI进阶:Comfyroll插件 (一) ComfyUI进阶:Comfyroll插件 (一)
可视化—gojs 超多超实用经验分享(三)
目录32.go.Palette 一排放两个33.go.Palette 基本用法34.创建自己指向自己的连线35.设置不同的 groupTemplate 和 linkTemplate36.监听在图形对象 GraphObject 上的右键单击37.定义节点/连线/canvas 背景上的右键菜单38.从节
从基础到高级应用,详解用Python实现容器化和微服务架构
本文分享自华为云社区《Python微服务与容器化实践详解【从基础到高级应用】》,作者: 柠檬味拥抱。 Python中的容器化和微服务架构实践 在现代软件开发中,容器化和微服务架构已经成为主流。容器化技术使得应用程序可以在任何环境中一致运行,而微服务架构通过将应用拆分成多个独立的服务,从而提升了系统的
Asp .Net Core 系列:基于 T4 模板生成代码
目录简介组成部分分类Visual Studio 中使用T4模板1.创建T4模板文件2. 编写T4模板3. 转换模板中心控制Manager根据 MySQL 数据库生成实体 简介 T4模板,即Text Template Transformation Toolkit,是微软官方在Visual Studio
Asp .Net Core 系列:基于 T4 模板生成代码
.NET开源、简单、实用的数据库文档生成工具
前言 今天大姚给大家分享一款.NET开源(MIT License)、免费、简单、实用的数据库文档(字典)生成工具,该工具支持CHM、Word、Excel、PDF、Html、XML、Markdown等多文档格式的导出:DBCHM。 支持的数据库 SqlServer、MySQL、Oracle、Postg
.NET开源、简单、实用的数据库文档生成工具 .NET开源、简单、实用的数据库文档生成工具 .NET开源、简单、实用的数据库文档生成工具
Java JVM——12. 垃圾回收理论概述
1.前言 1.1 什么是垃圾? 在提到什么是垃圾之前,我们先看下面一张图: 从上图我们可以很明确的知道,Java 和 C++ 语言的区别,就在于垃圾收集技术和内存动态分配上,C++ 语言没有垃圾收集技术,需要我们手动的收集。 垃圾收集,不是 Java 语言的伴生产物,早在1960年,第一门
Java JVM——12. 垃圾回收理论概述 Java JVM——12. 垃圾回收理论概述 Java JVM——12. 垃圾回收理论概述
写了一个json小工具,希望大家体验(Mac平台)
用rust写了一个json小工具“JSON PICKER”,欢迎大家试用: https://github.com/davelet/json-picker/releases/tag/V0.2 动机是平常开发的时候,经常遇到大段json,里面的很多字段是不需要的。 我所在的项目组在接口对接上出现了rep
写了一个json小工具,希望大家体验(Mac平台) 写了一个json小工具,希望大家体验(Mac平台)
Pybind11和CMake构建python扩展模块环境搭建
使用pybind11的CMake模板来创建拓展环境搭建 从Github上下载cmake_example的模板,切换分支,并升级pybind11子模块到最新版本 拉取pybind11使用cmake构建工具的模板仓库 git clone --recursive https://github.com/mr
Pybind11和CMake构建python扩展模块环境搭建