首页 星云 工具 资源 星选 资讯 热门工具
:

PDF转图片 完全免费 小红书视频下载 无水印 抖音视频下载 无水印 数字星空

面试官:说说读写锁的实现原理?

编程知识
2024年08月12日 16:23

在实际项目开发中,并发编程一定会用(提升程序的执行效率),而用到并发编程那么锁机制就一定会用,因为锁是保证并发编程的主要手段。

在 Java 中常用的锁有以下几个:

  1. synchronized(内置锁):Java 语言内置的关键字,JVM 层级锁实现,使用起来较为简单直观。
  2. ReentrantLock(可重入锁):需要显式地获取和释放锁,提供了更灵活的锁操作方式。
  3. ReentrantReadWriteLock(读写锁):性能较好,分为读锁和写锁,允许多个读线程同时获取读锁,而写锁具有排他性。
  4. StampedLock(邮戳锁):JDK 8 提供的锁,提供了一种乐观读的方式,先尝试读取,如果在读取过程中没有发生写操作,则可以直接完成读取,避免了获取读锁的开销。

而我们今天重点要讨论的是读写锁 ReentrantReadWriteLock 和它的实现原理。

1.读写锁介绍

ReentrantReadWriteLock(读写锁)是 Java 并发包(java.util.concurrent.locks)中的一个类,它实现了一个可重入的读写锁。读写锁允许多个线程同时读取共享资源,但在写入共享资源时只允许一个线程进行

它把锁分为两部分:读锁和写锁,其中读锁允许多个线程同时获得,因为读操作本身是线程安全的,而写锁则是互斥锁,不允许多个线程同时获得写锁,并且写操作和读操作也是互斥的。

也就是说读写锁的特征是:

  1. 读-读操作不加锁。
  2. 读-写操作加锁。
  3. 写-写操作加锁。

2.基本使用

ReentrantReadWriteLock 锁分为以下两种:

  1. ReentrantReadWriteLock.ReadLock 表示读锁:它提供了 lock 方法进行加锁、unlock 方法进行解锁。
  2. ReentrantReadWriteLock.WriteLock 表示写锁:它提供了 lock 方法进行加锁、unlock 方法进行解锁。

它的基础使用如下代码所示:

// 创建读写锁
final ReentrantReadWriteLock readWriteLock = new ReentrantReadWriteLock();
// 获得读锁
final ReentrantReadWriteLock.ReadLock readLock = readWriteLock.readLock();
// 获得写锁
final ReentrantReadWriteLock.WriteLock writeLock = readWriteLock.writeLock();
// 读锁使用
readLock.lock();
try {
    // 业务代码...
} finally {
    readLock.unlock();
}
// 写锁使用
writeLock.lock();
try {
    // 业务代码...
} finally {
    writeLock.unlock();
}

2.1 读读不互斥

多个线程可以同时获取到读锁,称之为读读不互斥,如下代码所示:

// 创建读写锁
final ReentrantReadWriteLock readWriteLock = new ReentrantReadWriteLock();
// 创建读锁
final ReentrantReadWriteLock.ReadLock readLock = readWriteLock.readLock();
Thread t1 = new Thread(() -> {
    readLock.lock();
    try {
        System.out.println("[t1]得到读锁.");
        Thread.sleep(3000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    } finally {
        System.out.println("[t1]释放读锁.");
        readLock.unlock();
    }
});
t1.start();
Thread t2 = new Thread(() -> {
    readLock.lock();
    try {
        System.out.println("[t2]得到读锁.");
        Thread.sleep(3000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    } finally {
        System.out.println("[t2]释放读锁.");
        readLock.unlock();
    }
});
t2.start();

以上程序执行结果如下:
image.png

2.2 读写互斥

读锁和写锁同时使用是互斥的(也就是不能同时获得),这称之为读写互斥,如下代码所示:

// 创建读写锁
final ReentrantReadWriteLock readWriteLock = new ReentrantReadWriteLock();
// 创建读锁
final ReentrantReadWriteLock.ReadLock readLock = readWriteLock.readLock();
// 创建写锁
final ReentrantReadWriteLock.WriteLock writeLock = readWriteLock.writeLock();
// 使用读锁
Thread t1 = new Thread(() -> {
    readLock.lock();
    try {
        System.out.println("[t1]得到读锁.");
        Thread.sleep(3000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    } finally {
        System.out.println("[t1]释放读锁.");
        readLock.unlock();
    }
});
t1.start();
// 使用写锁
Thread t2 = new Thread(() -> {
    writeLock.lock();
    try {
        System.out.println("[t2]得到写锁.");
        Thread.sleep(3000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    } finally {
        System.out.println("[t2]释放写锁.");
        writeLock.unlock();
    }
});
t2.start();

以上程序执行结果如下:
image.png

2.3 写写互斥

多个线程同时使用写锁也是互斥的,这称之为写写互斥,如下代码所示:

// 创建读写锁
final ReentrantReadWriteLock readWriteLock = new ReentrantReadWriteLock();
// 创建写锁
final ReentrantReadWriteLock.WriteLock writeLock = readWriteLock.writeLock();
Thread t1 = new Thread(() -> {
    writeLock.lock();
    try {
        System.out.println("[t1]得到写锁.");
        Thread.sleep(3000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    } finally {
        System.out.println("[t1]释放写锁.");
        writeLock.unlock();
    }
});
t1.start();

Thread t2 = new Thread(() -> {
    writeLock.lock();
    try {
        System.out.println("[t2]得到写锁.");
        Thread.sleep(3000);
    } catch (InterruptedException e) {
        e.printStackTrace();
    } finally {
        System.out.println("[t2]释放写锁.");
        writeLock.unlock();
    }
});
t2.start();

以上程序执行结果如下:
image.png

2.4 优点分析

  1. 提高了程序执行性能:多个读锁可以同时执行,相比于普通锁在任何情况下都要排队执行来说,读写锁提高了程序的执行性能。
  2. 避免读到临时数据:读锁和写锁是互斥排队执行的,这样可以保证了读取操作不会读到写了一半的临时数据。

2.5 适用场景

读写锁适合多读少写的业务场景,此时读写锁的优势最大。

3.底层实现

ReentrantReadWriteLock 是基于 AbstractQueuedSynchronizer(AQS)实现的,AQS 以单个 int 类型的原子变量来表示其状态,并通过 CAS 操作来保证线程安全。

这点也通过 ReentrantReadWriteLock 源码发现,ReentrantReadWriteLock 中的公平锁继承了 AbstractQueuedSynchronizer(AQS):

而 ReentrantReadWriteLock 中的非公平锁继承了公平锁(公平锁继承了 AbstractQueuedSynchronizer):

所以可以看出 ReentrantReadWriteLock 其底层主要是通过 AQS 实现的。

4.AQS

AbstractQueuedSynchronizer(AQS)是 Java 并发包中的一个抽象类,位于 java.util.concurrent.locks 包中。它为实现依赖于“独占”和“共享”模式的阻塞锁和相关同步器提供了一个框架。

AQS 是许多高级同步工具的基础,例如 ReentrantLock、ReentrantReadWriteLock、CountDownLatch 和 Semaphore。

4.1 AQS 核心概念

AQS 中有两个最主要的内容:

  1. 同步状态(State):用于表示同步器的状态,例如锁的持有数量、资源的可用数量等。可以通过 getState()、setState() 和 compareAndSetState() 方法来操作。
  2. 等待队列(CLH 队列):由双向链表实现的等待线程队列。当线程获取同步状态失败时,会被封装成节点加入到等待队列中。

4.2 AQS 工作流程

AQS 工作流程主要分为以下两部分。

  1. 加锁与释放锁
    • 线程尝试获取同步状态,如果获取成功,则直接执行后续操作。
    • 如果获取失败,则将当前线程封装成节点加入等待队列,并阻塞当前线程。
    • 当持有锁的线程释放锁时,会唤醒等待队列中的后继节点线程,使其重新尝试获取锁。
  2. 等待与唤醒
    • 等待队列中的节点通过自旋和阻塞来等待被唤醒。
    • 唤醒操作会按照一定的规则选择等待队列中的节点进行唤醒。

课后思考

AQS 是如何实现独占锁和共享锁的?AQS 使用了什么设计模式?

本文已收录到我的面试小站 www.javacn.site,其中包含的内容有:Redis、JVM、并发、并发、MySQL、Spring、Spring MVC、Spring Boot、Spring Cloud、MyBatis、设计模式、消息队列等模块。

From:https://www.cnblogs.com/vipstone/p/18355403
本文地址: http://shuzixingkong.net/article/1030
0评论
提交 加载更多评论
其他文章 nginx配置web服务|反向代理|负载均衡
目录http模块server模块(虚拟主机配置)location模块基本语法匹配类型等号匹配(=)正则匹配(~)忽略大小写的正则匹配(~*)常见指令嵌套 location反向代理负载均衡步骤 1: 定义 Upstream 块步骤 2: 配置 Server 和 Location 块示例配置负载均衡策略
Python 开发环境的准备以及一些常用类库模块的安装
在学习和开发Python的时候,第一步的工作就是先准备好开发环境,包括相关常用的插件,以及一些辅助工具,这样我们在后续的开发工作中,才能做到事半功倍。下面介绍一些Python 开发环境的准备以及一些常用类库模块的安装和使用的经验总结,供大家参考了解。
Python 开发环境的准备以及一些常用类库模块的安装 Python 开发环境的准备以及一些常用类库模块的安装
JAVA 两个类同时实现同一个接口的方法
本文简要介绍了JAVA 两个类同时实现同一个接口的三个方法,分别是两个类分别实现接口、匿名内部类、Lambda表达式,分别给出了代码示例,清晰直观。
手把手教你实现Scrapy-Redis分布式爬虫:从配置到最终运行的实战指南
本文详细讲解了如何通过Scrapy-Redis实现分布式爬虫的全过程,涵盖配置步骤、代码实现以及最终运行的效果展示。通过实战操作,帮助读者快速掌握Scrapy-Redis在分布式爬虫中的应用技巧。
手把手教你实现Scrapy-Redis分布式爬虫:从配置到最终运行的实战指南 手把手教你实现Scrapy-Redis分布式爬虫:从配置到最终运行的实战指南
记录兼职运维的一天
1.背景 7月底部门的运维大哥离职了,奈何又没有新运维接替,至于为什么没有补位,懂得都懂,按老大的意思是先让开发一人顶一块,8月底争取补上。 打心底我有点排斥这事,但是人到中年又有什么办法呢,上有老下有小,唯有苟。 分派给我的部分是服务器漏洞的修复,小弟虽然懂几个linux命令但是在“漏洞修复”这个
记录兼职运维的一天 记录兼职运维的一天 记录兼职运维的一天
记录一次物理专业编程大作业完成过程
有一天毕业多年的大学同学在班级微信群里问有没有人能帮忙写一段代码实现一个功能。我一看这段描述简直就头大了,程序员都比较害怕这种没有格式的文字,甚至连个换行都没有,说实话多看一眼就感觉莫名烦躁。我也就没敢讲话,即使有同学在群里已经开始点名了,也始终一言不发。
记录一次物理专业编程大作业完成过程 记录一次物理专业编程大作业完成过程 记录一次物理专业编程大作业完成过程
概率论沉思录:合情推理
最近蔻享学术主办了每周一次的《概率论沉思录》读书会活动,恰好我也正在读该书中译版,通过该活动我了解到了不同学科的老师(数学/物理/统计/计算机)对这本书的不同理解,而我自己对该书的理解也在这个过程中逐渐深入了。于是准备每周都持续更新一下我的读书笔记。本书作者是一位物理学家,不同于基于Kolmogor
代码随想录Day12
二叉树遍历 分为前序、中序、后续、层序四种 其中前中后序属于深度优先搜索,层序属于广度优先搜索 前序遍历顺序: 根节点->左子树->右子树 中序遍历顺序: 左子树->根节点->右子树 后序遍历顺序: 左子树->右子树->根节点 不难发现,前中后其实就是根节点在遍历
代码随想录Day12 代码随想录Day12